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1 Executive summary  
In order for wireless mesh networks to be able to self-configure to adapt to changing operational 
conditions, it is necessary for the nodes to be able to sense the environment in order to deter-
mine the operational state of the system. The state is then used to compare against potential op-
timization outcomes.  

In the MESH-WISE project we consider both nodes that participate in network access infra-
structure as well as wireless sensor nodes which form part of a future Internet of things infra-
structure scenario. We therefore focus on two aspects of the sensing, first, channel state sensing 
for determining configuration actions which will improve network capacity and lower delays 
and second, sensing of the environment for data management in sensor networks. This work al-
so includes security aspects of data management in these networks. 

We have made good progress in these two areas and produced a number of tangible outcomes in 
the form of publications. Furthermore, implementations of some of the results have been made 
in a mesh management framework at MobiMESH. 

2 Sensing of the wireless channel state 
One of the fundamental primitives of 802.11-based WLAN standards is the sensing of 
the channel state before transmission. The sensing is used to inform transmitting nodes 
about the occupancy of the medium so an informed decision can be made whether or 
not to access the channel.  

The fundamental scheme known as Carrier Sense Multiple Access (CSMA) was first in-
troduced in the 1970s as an improvement over the then existing pure random access 
method called ALOHA. In 1975, Kleinrock and Tobagi [1] published their seminal 
work on the performance of the CSMA scheme under varying system loads. However, 
the modelling is very intricate and extending it to cover a full implementation of a 
802.11 protocol leads to models that are difficult to work with. Instead, in 2000 Bianchi 
[2] presented an alternative model, which approximated the system by considering full 
load, i.e. all nodes always have non-empty send buffers. This model have been the most 
used ever since because of its relative simplicity. 
However, in our work in MESH-WISE we have investigated the effects of channel 
sensing and discovered that the simplistic view taken in CSMA is not suitable for mod-
ern WLAN standards [3, APPENDIX A]. Our findings show that the increasing data 
rates in modern WLAN standards coupled with a trend towards smaller frames in mo-
bile systems lead to CSMA being inefficient and sometimes worse performing than the 
ALOHA scheme. In short, sending a frame is so fast that it takes longer to wait to sense 
the channel and one of two problems may occur. First, valuable transmission opportuni-
ties may be lost while sensing and second, the sensed information is outdated during the 
transmission of a frame.  

Our findings are therefore that the sensing has to be done on higher quality information 
than previously used and active sharing of deterministic information becomes an excit-
ing alternative to pure random access. Our work is now focussing on the effectiveness 
of different cooperative schemes where information sharing sits at the core of the chan-
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nel access mechanism. We have thus shifted the nature of the sensed information and 
found that this can be done without requiring significantly more complex sensing or 
signalling.  
 

3 Sensing for data management in wireless sensor networks 
We divide the work in this area into two separate categories, efficient information sens-
ing and secure information sensing.  

3.1 Efficient information sensing 

In Wireless Sensor Networks (WSN), most of a sensor’s energy is consumed for chan-
nel sensing and data transmission. Due to the broadcast nature of the wireless medium, 
a sensor consumes energy for sensing every packet transmitted by its one-hop neigh-
bors. Likewise, a sensor consumes energy for the transmission of raw monitored data 
(or relaying of peers’ data). In order to minimize the energy consumption due to trans-
mit and carrier sense, efficient data collection is of paramount significance.  
We propose a novel data collection scheme based on compressed sensing and matrix 
completion. In a nutshell, this technique takes advantage of intra-temporal correlation of 
sensor readings and the inter-spatial correlation of the data gathered by different sensors 
and forwarded to a sink node [4, APPENDIX B].  If the sensed data is sparse, using 
compressed sensing in a sensor results in using fewer samples for encoding data, and 
thus fewer packet transmissions are needed for the data to be reported. The use of ma-
trix completion technique in the sink node enables reconstructing the reported com-
pressed data even in the presence of packet loss as a common issue in random access 
wireless networks. 

Our findings [4, APPENDIX B] show that the proposed technique performs substantial-
ly well (with less than 10% error) under relatively high packet loss rates (as high as 
40%) and very high compression rates (as high as 75%). Also, the use of this technique 
leads to substantial reduction of energy consumption.  

 

3.2  Secure information sensing 

With the introduction of SmartCity applications realized by WSNs, the security issues 
and the appropriate countermeasures becomes highly crucial for these network to suc-
ceed. Furthermore, the increasing demand for spectrum triggered by the growth of ap-
plications highlights the use of cognitive radio as a potential solution for efficient spec-
trum sharing, which in turn triggers new types of security threats. We identified the 
various security and privacy threats common to both WSNs and cognitive WSNs and 
also those threats unique to the latter type of WSNs [6, APPENDIX D]. We further 
classified the security attacks with respect to the architectural layers of WSN. Counter-
measures and the open challenges are specified, which can be used as a reference for fu-
ture research [6, APPENDIX D]. 
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 Energy efficient data collection is embraced as a technique to extend the lifetime of 
WSNs, however, it can also be used as an incentive for malicious nodes to efficiently 
collect data, compromise privacy, and plan more serious attacks. In [5, APPENDIX C], 
we showed how malicious nodes can use compressed sensing and matrix completion 
technique [4, APPENDIX B] to detect some application features (e.g., periodicity) and 
thereby detect the nature of the application. Our findings reveal that malicious nodes 
can successfully detect the periodic components of the captured wireless traffic for high 
compression ratios. 

4 PHY/MAC sensing for routing optimization 
Considering the backbone network component of a wireless mesh network, it can be 
easily seen that the overall performance can be greatly improved if the routing tech-
niques could gather and employ information from the PHY and the MAC layers and 
employ them to perfect the routing metric.  
Two of the major issues that shall be kept in account when considering routing in a 
wireless mesh backbone scenario are: 

− the physical rate of the link: since IEEE 802.11 interfaces employ rate 
adaptation algorithms to adapt the rate to the environment conditions; therefore 
the metrics that employ the nominal link rate are not effective on such networks, 
and the sensing of the instant link rate is needed; 

− the intra flow interference: in meshed networks the shortest path may cross two 
consecutive links employing the same frequency, which would lead to dramatic 
performance losses; such interference shall therefore be detected and avoided 
through proper metrics. 

We have investigated these two dimensions and implemented the core parts of a sensing 
framework in the MobiMesh architecture as detailed below: 

4.1 Physical link rate detection 

In wired networks, the transmission rate is constant and it is the same for the entire 
physical transmission range. As opposed, in IEEE 802.11 wireless net- works is possi-
ble to employ different rates to transmit. The reason of multi-rate capability is directly 
related on wireless communication characteristics. There is a direct relationship be-
tween the rate of communication and the quality of the channel required to support that 
communication reliably. Since distance is one of the important factors that determines 
wireless channel quality, there is an inherent trade-off between high transmission rate 
and transmission range, this occurs for the reason that low rates use stronger modula-
tions to channel degradations so low rates has longer range than high rates. Wireless 
channels are unpredictable, can be very instable and vary quickly, then transmission rate 
should dynamically changes for adapt to the environment conditions. Therefore, differ-
ent rates are chosen according to signal strength received. 
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There are several rate control algorithms which perform rate adaptation, most important 
are ONOE, ARF and SampleRate.   

4.1.1 Link quality metrics 

It is possible to collect and calculate link quality parameters and characteristics at the 
MAC and PHY level. These particular parameters referred to medium are managed by 
the wireless driver in order to correctly handle the wireless connection. There are multi-
ple metrics based on the link quality, several metrics are employed internally by driver 
whereas other can be calculated. The most important metrics are: average medium busy 
time, average medium busy transmit time, average medium busy time, receive time, 
MAC layer delay, link transmission rate, link frame size. In the following two very in-
teresting metrics related to the quality of the link will be explained. These metrics are 
complex to calculate and could be employed in the future by ad-hoc routing protocols in 
order to improve performance.   

4.1.1.1 Busy time 

A node is defined to be busy if it is transmitting or receiving. A node is consid- ered to 
be transmitting not only if it is emitting power through its antenna, but also if it is per-
forming tasks related to frame transmission which may include interframe space, 
backoff time, etc. A method has been defined in order to obtain the average busy time. 
Every time a packet is sent with or without success, the sender node is busy for a period 
of time. With some calculations based on the various IEEE 802.11 standards, it is possi-
ble to calculate how long the sender is busy for each transmitted frame. Similarly, every 
time a packet is received, it is possible to calculate how long it has kept the receiver 
busy. This method of getting the busy transmit and busy receive time of a node requires 
precise technical details about each sent or received frame; then, it is possible to com-
pute the busy time.   

4.1.1.2 Bandwidth availability 

A list of all neighboring nodes is kept in memory. For each of them, the rate of the last 
frame is kept in memory, as well as other PHY characteristics. The last rate used to a 
destination is reported as the current rate of the link. The available bandwidth to a desti-
nation depends on the rate and PHY used to that destination. It depends on the availabil-
ity of the medium and on the frame size as well. The current rate and PHY of a link is 
known already. The medium availability is known through the computed percentage 
busy time described previously, the percentage of idle time is equal to 100% - percent-
age busy time. The frame size of future transmissions cannot be known in advance. 
There- fore, is possible estimate the available bandwidth of a link selecting a frame size. 
IEEE 802.11 vary size from 132 bytes the short size frames to 2346 bytes the long size 
frame. Hence, the available bandwidth is calculated from divide size of the packet by 
time spent to send the packet that includes transmission time, waiting time and time for 
acknowlegment.   
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4.1.2 Radio link metrics 

To be as much as possible aware on the radio link conditions, is it possible to outline 
several important parameters which are characteristics in particular of wireless links; 
these parameters can be used to take accurate routing decisions. The information related 
to radio conditions can be gathered by wireless driver that works at the PHY and MAC 
level. In fact, wireless driver employs measures of the received signal strength for some 
functions such as decide weather the channel is free or busy. In the following, some ra-
dio metrics will be presented.   

4.1.2.1 Signal strength 

The signal strength is the measure of how strong a received signal is. Accord- ing to this 
parameter, the wireless driver can determine the channel status or the quality of a link, 
and then to decide how reliable is. In addition, it could be a usefully parameter in order 
to compare the signal received between differ- ent nodes and perform roaming tasks 
when needed. Information about signal strength belongs to physical layer. The IEEE 
802.11 standards have defined the Receive Signal Strength Indicator (RSSI) that is a 
numeric value with range of 0-255 which represent the measured signal power by the 
wireless NIC. The value of RSSI is no standard and each vendor employs its own meas-
ured mechanism to its devices, therefore by now, is not appropriated to use as a parame-
ter in routing metrics.   

4.1.2.2 Bit rate 

The transmission bit rate parameter permit to determine the link transmission speed. 
The IEEE 802.11 standards permit multiple bit rates, these rates can be applied frame by 
frame. The standard does not specify how to choose the physical transmission rate, there 
are several algorithms that set the transmission rate. Rate control algorithms choose 
transmission rate depending on the channel quality. Using the transmission rate and the 
frame size is possible to calculate the transmission time for a frame. Transmission rate 
as well as transmission time are interesting parameters to be applied as a metric in rout-
ing protocols because they can lead to select best routes available.   

4.1.2.3 Bandwidth 

The bandwidth parameter denote the link capacity. Bandwidth measures the amount of 
data that can travel through a link. Usually is expressed in bits per second (bps). Band-
width measurement for a wireless link is a complex process. This value can provide im-
portant information in order to avoid bottleneck nodes, allowing the choice of high 
throughput nodes in route selection. Furthermore, the wireless channel is a shared ac-
cess medium, hence the bandwidth varies with depending on the number of hosts that 
contend for the channel. Another effect that affect bandwidth is observed in multi-hop 
networks with a single radio interface where the bandwidth is halved on every hop. The 
are particular definitions of bandwidth. The available bandwidth is defined as the avail-
able capacity and is different of bandwidth that is referred to the maximum capacity. 
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The estimated bandwidth is the expected capacity that will can be used. Bandwidth is a 
very useful parameter in order to improve route selection.   

4.1.3 Link rate retrieving 

The rate selection algorithms implemented by the IEEE 802.11 drivers collect data eva-
luating the information introduced in the previous sections in order to select the best 
transmission rate to be used when transmitting data to a specific destination. They also 
continuously analyze and monitor the channel to adapt the transmission rate to the 
changing conditions of the environment. 
Therefore in order to make the routing decision aware of the radio link quality, the best 
indicator is the rate selected by the driver itself through its rate selection algorithm; it is 
in fact a value selected among a standardized set (the defined IEEE 802.11 transmission 
rates) that summarizes all the values presented in the previous sections in a single, “en-
vironment estimation” parameter.  
The fact that the selected value is chosen from a standardized set is very important be-
cause it will let us to use the selected rate for a link as an indicator of the link quality 
independently from the rate selection algorithm itself; therefore we can decouple the ra-
dio aware routing algorithm from the rate selection algorithm, and thus swap the latter 
without changes to the former. 

4.2 Intra flow Interference 

Various problems arise when equipping wireless mesh nodes with multiple antennas. 
Existing routing protocols can still be used and will provide connectivity in WMNs, but 
no optimal throughput can be expected due to the characteristics of the wireless medi-
um. In this section we will talk about problems in WMNs when equipping mesh nodes 
with multiple wireless interfaces.  

Two types of collision can be observed in wireless networks. Both of them are already 
foreseen in the standardization of the IEEE 802.11 standards. The first collision type is 
direct collision where two wireless devices, tuned to the same channel, within range of 
each other try to transmit at the same time. The mechanisms to react on this type of col-
lision are based on the CSMA/CA model implemented by the IEEE 802.11 standard. 
The hidden node problem is the second kind of collision foreseen in the IEEE 802.11 
MAC layer. The RTS/CTS mechanisms to prevent this collisions are implemented to 
handle this situation. Those mechanisms can be activated when needed and are not ob-
ligatory. It becomes quite clear, that in a dense area, like a WMN, with many nodes us-
ing the same channel, those collisions happen even more frequently. This will clearly 
limit capacity and throughput in those networks. One suggested solution to this is the 
usage of wireless nodes this multiple wireless interfaces tuned to different channels. 
This will decrease the traffic on each channel and hence produce less collisions.  

Various sources can create interference in wireless networks. But not only undesired ef-
fects in the environment can cause interference in WLANs. Interference can be caused 
by other nodes in the coverage area of a node, when using the same or overlapping 
channels. When data is transmitted from one node to another, various nodes can partici-



FP7$PEOPLE$2012$IAPP-324515-MESH%WISE-D2.1!

31$08$2014-- -----The-MESH$WISE-Consortium- Page-[10]--

pate in the transmission. If nodes, sensing each other, participating in this transmission 
use overlapping channels for this transmission they create interference along this way, 
as those can not send while another node is sending on the same channel. This effect 
can even be observed at a node passing on information on a channel that is overlapping 
with the one used for receiving this data. This type of interference is called intra-flow 
interference. Interference can also be caused by nodes not transmitting the same data 
flow. If they are within sensing range of each other and use overlapping channels, they 
cannot send or receive at the same time. This type of interference is called inter-flow in-
terference.  

As seen in table 2.1 on page 6 in the IEEE 802.11g standard up to 14 different channels 
are defined. As the frequencies of adjacent channels are overlapping those 14 channels 
can never be fully interference free used. In fact only a maximum of 3 non overlapping 
channels can be used at the same time. Even in the IEEE 802.11a standard, defined with 
a maximum of 27 non overlapping channels, some problems can be observed. It has 
been noted by [7] that at single node equipped with multiple wireless interfaces, inter-
ference between adjacent non overlapping channels can arise. This means that the num-
ber of channels that can be used without creating interference for one node is smaller 
than the total number of available channels. It has been proven experimentally that by 
increasing the distance between interfaces the interference can be diminished [8]. This 
means that even though many channels are defined in the 802.11 standards, channel se-
lection has to be done carefully in order to avoid high interference.  

Summarizing, it can be said, that various problems arise in WMNs. This problems are 
often connected with the usage of wireless links. Therefore recent research points to 
equipping wireless nodes with multiple wireless interfaces. By tuning each wireless in-
terface to a different, non overlapping channel, problems like interference and collisions 
can be mitigated. Two aspects have to be considered. First, this channel assignment can 
not be done on a random base, as network fragmentation or bad routes can be caused. 
Furthermore, the used routing protocol has to be aware of the different used channels 
and try to balance the traffic in a WMN on a link and channel basis. In a WMN with 
both, a good channel assignment, and channel aware routing protocol collisions can be 
reduced significantly and throughput and capacity of the WMN increased.  

As stated above, the routing protocol decisions must be related to the information about 
the radio channel assignment in order to make multi-radio devices effective in increas-
ing the network performances. Therefore we'll design and implement an intra-flow in-
terference identification algorithm in order to be able to detect and possibly avoid intra-
flow interference; also, we'll define a routing metric that will take such interference into 
account while taking routing decisions in order to minimize it and completely avoid it 
wherever possible. 

 

5 Conclusions 
We have made good progress with the work on sensing and information manage-
ment/storage in the project. Certain practical implications will need to be revisited as 
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technical solutions are derived in the later part of the work as necessary. Apart from 
publications and seminars where we have reported our results, we have had ongoing 
work to implement parts in the Mobimesh management framework, which was also 
demonstrated during the July project outreach in Heraklion, Greece. We are therefore 
confident in moving forward towards work on effective management and configuration 
solutions in the project. 
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Abstract—The current family of 802.11 protocols are based on
the Carrier Sense Multiple Access (CSMA) mechanism which is
a simple and robust means of sharing a channel. However, two
current trends in wireless networks point towards a situation
where CSMA fails to perform better than pure random access
solutions such as ALOHA. The first trend is the ever increasing
raw data rate in each generation of 802.11 which is set to
continue with the current 802.11ax standardisation. The second
is the move towards smaller frames as end users increasingly
use mobile devices instead of desktop computers. We show that
as the ratio of propagation delay to packet transmission time
increases, the probability of sensing incorrect information about
the channel state increases correspondingly, to the point where
ALOHA outperforms CSMA. This leads to a need to develop new
wireless MAC protocols with an increased focus on information
sharing and co-ordination between nodes.

Index Terms—CSMA, 802.11, 802.11ax, wireless LAN, MAC

I. INTRODUCTION

Carrier Sense Multiple Access (CSMA) has been in use in
wireless LANs for more than two decades. It provides a simple
but effective means of negotiating medium access between
multiple nodes without requiring a centralised controller or
extensive configuration. However, the landscape for unlicensed
spectrum wireless networks appears very different today than
when CSMA was first developed and these changes can
potentially have a large impact on the effectiveness of carrier
sensing, the central mechanism in CSMA.

There are two main changes occurring in wireless LANs
that affect the performance of CSMA. The first is increased
raw data rates, leading to shorter frame transmission times.
The second change we are seeing is an increased number of
short packets, which incur higher proportional overhead. The
trend is toward mobile devices and current studies show that
the average frame size is very small in these networks.

Carrier-sensing is vulnerable to collisions whenever a node
senses the channel state within one propagation delay of
the beginning of another node’s transmission. This becomes
increasingly likely as data rates increase and packet sizes
decrease, since the proportion of transmission time represented
by periods vulnerable to incorrect sensing (and thus collision)
increases. In this paper we will explore these trends and
provide analysis, based on the model of CSMA developed
in [1], demonstrating that we are now reaching the limits of

the usefulness of CSMA and thus require a new approach to
MAC protocols for wireless LANs.

Data rates are increasing with improved physical layer
technologies. Table I shows the advancements in 802.11 raw
data rates over time. Further, the new 802.11ax standard aims
to achieve at least a four times increase in data rate [2]. An
examination of the protocol overheads, however, reveals that
many are not dependent on the data rate and thus are more
detrimental to efficiency at higher data rates.

Inter-frame spaces, time spent transmitting acknowledge-
ments and management traffic, and headers all detract from the
channel capacity available to transmit data from higher layer
applications [3]–[5]. In addition to this, the contention window
mechanism — employed when a node wishes to transmit but
cannot because the channel is already busy — also affects
the maximum achievable throughput [5]–[7]. A poorly chosen
contention window can result in either idle time, when all
nodes are waiting for their randomly selected transmission
slots and no node is actually transmitting yet, or collision,
if two or more nodes choose the same slot.

However slot times, which are the basis for inter-frame
spacing and backoff times, are based not on data transmission
times but rather on the propagation delay [8]. This means that
as data rates go up, a higher proportion of the channel time is
devoted to these overheads rather than to transmitting useful
data. Some mechanisms have been developed to mitigate this
problem, in particular frame aggregation [9]–[12], so that more
data is sent in between each instance of header, acknowledge-
ment, inter-frame spacing and backoff. Nonetheless, trends in
the traffic patterns in wireless LANs and in how these networks
are used show that simply moving to larger and larger frames
is not a comprehensive answer to the problems of inefficiencies
in CSMA protocols.

A recent study of packet sizes in 802.11 networks in Boul-
der, Colorado shows a large proportion of small packets being
transmitted [13]. In both residential and managed enterprise
environments, packets of less than 300 bytes predominated.
Moreover, usage patterns in wireless LANs are changing, with
increases in uplink traffic from many different nodes; real-
time, delay-sensitive traffic; and low-frequency sensor traffic
such as needed for smart homes and the Internet of Things
[14]–[18]. These traffic types are not well suited to frame



Standard Year Max data rate
(Mb/s)

Frequency
(GHz)

802.11 1997 2 2.4
802.11a 1999 54 5
802.11b 1999 11 2.4
802.11g 2003 54 2.4
802.11n 2009 150 2.4, 5
802.11ac 2013 866.7 5

TABLE I
DATA RATES OF 802.11 STANDARDS [8]

aggregation.
As our results will show, CSMA is inherently unsuited to

networks in which packet transmission times are short, as is
the case with high data rates and small packets. Instead, a new
class of MAC protocols is needed in order to improve the
reliability of the information nodes have about the channel
state and when they should transmit. This can be achieved
through greater co-ordination and information sharing between
nodes. However, care must be taken to not unduly increase
overhead or introduce incompatibility with existing protocols.

The rest of this paper is organised as follows. Section II
discusses related work. Section III then gives an overview
of the model presented in [1] and Section IV describes our
implementation of this model and results for small packet
transmission times. In Section V, we analyse the utility of
channel sensing as a function of propagation delay relative to
packet transmission time. Section VI outlines an approach to
moving beyond the limitations of CSMA and finally Section
VII concludes this paper.

II. RELATED WORK

There is a large body of existing work addressing var-
ious aspects of CSMA performance under many different
conditions and assumptions. Bianchi’s model [19] has been
particularly influential, with numerous further developments
following on from it [20]–[24]. There are some limitations of
the Bianchi model that make it unsuitable for our purposes,
however. The Bianchi model captures the behaviour of CSMA
when the network is at saturation, that is, when every node
always has a packet queued to send. This makes certain
simplifications possible. In particular, there is no notion of
packet transmission time, since the packet arrival rate does
not need to be considered. Collisions are also only modelled
when nodes choose the same backoff counter value, not when
nodes sense the channel during one propagation delay after
the beginning of a packet. This makes sense under saturation
conditions where no packet will arrive during this vulnerable
period as all nodes already have a packet waiting at all times.
There have been some extensions of this work to non-saturated
conditions (e.g. [20], [24], [25]), however one or more of these
limitations still remain in each case.

We wish to study the combined effect of increasing data
rates and short packets and as such, we need to explicitly
model packet transmission time. Collisions due to sensing
during a vulnerable period are also a significant factor under

these circumstances, as our results will demonstrate, so they
cannot be neglected. Further, we would like to examine
network behaviour not just under saturation conditions but also
under lighter loads, and in particular how quickly the channel
reaches saturation under increasing loads.

In order to investigate the effects of high data rates, small
packets and non-saturation conditions, we instead take as our
starting point the model developed by Kleinrock and Tobagi
[1]. This model incorporates explicit modelling of packet
transmission time relative to the propagation delay and varying
offered load. While it focuses on p-persistent CSMA and
its variants, rather than 802.11, its results are nonetheless
applicable to any CSMA protocol, particularly for the aspects
we wish to consider. Section III will give a more detailed
explanation of this model.

A number of simplifying assumptions are made in the
model in order to make the analysis tractable. In particular
a common packet size and propagation delay across all nodes
is used, and the network consists of an infinite number of
nodes collectively forming a Poisson-distributed packet arrival
process. These assumptions will of course not be true in any
realistic network, however they are reasonable for examining
the theoretical throughput achievable in CSMA. In particular,
realistic traffic models following the bursty, self-similar traffic
patterns characteristic of internet traffic [26]–[29] are likely to
exacerbate the problem of collisions due to channel sensing
during vulnerable periods rather than mitigate it, so the Pois-
son model represents a best performance bound for this work.
Analysis using a finite number of nodes is developed in [30],
however this leads to a significantly more complex model. In
addition, an infinite population model is a good approximation
for a large number of nodes and we are particularly interested
in high-density networks such as those targeted by 802.11ax.

III. KLEINROCK AND TOBAGI CSMA ANALYSIS

Kleinrock and Tobagi developed a model in [1] for
analysing the throughput and delay characteristics of a number
of CSMA variations, along with ALOHA and slotted ALOHA
[31]. The CSMA protocols considered primarily differ in their
persistence scheme. In this paper, we will focus on p-persistent
CSMA as it is the most similar to the 802.11 protocols in
widespread use today, however [1] also provides results for
non-persistent and 1-persistent CSMA, in both slotted and
unslotted variants.

We will first introduce some notation used in [1], which
is necessary in order to understand and discuss the analysis
based on this model. Kleinrock and Tobagi characterise MAC
protocols in terms of throughput, denoted by S. In this model,
all packets are considered to be of the same length and
as such, time is normalised to the packet transmission time
T . S is then the number of packets transmitted per packet
transmission time, with S 2 [0, 1]. If packets were able to
be perfectly scheduled with no collisions and no idle time
between transmissions (which is not actually achievable with
the protocols considered), S would thus be equal to 1. We
also have the offered load, G (G � S), which is the number
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Fig. 1. p-persistent CSMA cycle as described in [1]. Vertical arrows indicate
packet arrivals.

of packets, including retransmissions of previously collided
packets, that nodes collectively attempt to transmit on the
channel per packet transmission time.

A particularly important parameter for our work is a, the
ratio of the propagation delay to the packet transmission
time. Since in this model time is normalised to the packet
transmission time, a is then simply the propagation delay
expressed in units of T . Lastly we have p, the persistence
parameter. A node which senses the channel busy will first
wait until the end of the current transmission, and then attempt
to transmit with probability p, or wait one slot time (equal
to a) with probability 1 � p. This is then repeated for every
slot until the node transmits its packet, either successfully or
unsuccessfully (i.e. resulting in a collision).

The p-persistent CSMA protocol as described in [1] follows
a cycle consisting of an idle period followed by a busy
period (see Figure 1). During an idle period, no packets are
transmitted on the channel and no nodes have packets queued
to send. An idle period ends when a packet arrives at a
node ready to be transmitted. The system then enters a busy
period. Note that during a busy period, the channel itself is not
constantly busy, that is, a signal is not present on the channel
the entire time. This is because some of the time is spent with
nodes waiting to transmit, according to the persistence scheme.

The node (or potentially more than one node, each with
its own packet to transmit) where this packet is queued then
follows the p-persistence protocol to determine a slot in which
to start the actual transmission of the packet. This transmission
is referred to as a transmission period (TP) and ends one
propagation delay (a) after the node has completed transmit-
ting the packet. The transmission can either be successful,
if no other node attempts to transmit at the same time, or
result in a collision, if two or more nodes transmit at once. In
the latter case, the colliding packets are then rescheduled for
retransmission.

If any packets arrive (at any node) during the TP, the nodes
with packets queued perform the p-persistence scheme to
determine, at each slot, whether they will attempt to transmit.
The system then experiences an initial random transmission
delay (IRTD) of zero or more slot times, during which the
channel is idle. It is possible for more packets to arrive
during this time, in which case these nodes will also use the
persistence scheme to decide when to attempt transmission.
Once at least one node begins a new transmission in a slot, a
new TP occurs (which, again, may be successful or result in
collision). This process continues until such time as there are

T Packet transmission time for a single packet, normalised to 1
S Throughput; the number of packets transmitted per T seconds
G Offered load; number packets to transmit per T seconds
TP Transmission period (see Figure 1)
p Persistence parameter; the probability a node will attempt to

transmit in any given slot
a Ratio of propagation delay to packet transmission time
B̄ Duration of a busy period (see Figure 1)
Ī Duration of an idle period (see Figure 1)

IRTD Initial random transmission delay (see Figure 1)
m̄ Average number of TPs in a busy period
t̄ Average number of slots in an IRTD

TABLE II
NOTATION USED IN THIS PAPER AND IN [1]

no nodes with packets queued for transmission at the end of
a TP. The system then enters the next idle period — and thus
the start of the next cycle — one propagation delay after the
end of the last TP.

The average length of a busy period is denoted by B̄ and
the average length of an idle period by Ī . The total average
length of a cycle is then B̄+ Ī . The average number of slots in
an IRTD is denoted t̄. Expressions for these values are derived
in [1]. Lastly, we will denote average number of TPs in a busy
period by m̄ (not used in [1]). A summary of notation can be
seen in Table III.

IV. LARGE a ANALYSIS

In [1], only results for relatively small values of a are
presented, as these were values that were reasonable for the
data rates and traffic patterns in use at the time of publication.
We developed a sofware implementation of the model from
[1] and now present analysis for larger values of a.

Figures 2 and 3 show throughput vs offered load for the
various MAC protocols included in the analysis — ALOHA,
slotted ALOHA, non-persistent CSMA; slotted non-persistent
CSMA, 1-persistent CSMA, slotted 1-persistent CSMA and
p-persistent CSMA (here with p = 0.1) — with decreasing
a values. As can be seen in the figures, as a grows larger,
throughput decreases dramatically, eventually to the point that
the CSMA protocols perform worse than slotted ALOHA —
that is, we eventually gain nothing by sensing the channel and
can do no better than pure random access.

To understand why this is the case, it is helpful to con-
sider the probability that there will be a collision when a
node attempts to transmit a packet. As discussed in [1], the
probability of a successful transmission is given by S

G and
hence the collision probability is 1� S

G . Figures 4 and 5 show
the collision probability as a function of offered load for the
same values of a as in Figures 2 and 3, again with p = 0.1.

We see that the probability that a packet will encounter
a collision using CSMA increases as a increases, eventually
becoming greater than that for slotted ALOHA. More time
is thus wasted transmitting interfering packets that do not
result in data being received successfully, reducing the channel
utilisation.



Fig. 2. Throughput vs offered load for various wireless MAC protocols,
a = 0.01

Fig. 3. Throughput vs offered load for various wireless MAC protocols,
a = 0.5

Fig. 4. Collision probability for various wireless MAC protocols, a = 0.01

Fig. 5. Collision probability for various wireless MAC protocols, a = 0.5

A. Discussion
That the collision probability increases as a increases is a

direct consequence of the reason for encountering collisions

a

Normalised
time

Vulnerable
period

Fig. 6. Period during a transmission that is vulnerable to collision

in CSMA. We first need to distinguish between the two types
of collisions possible using CSMA protocols. The first occurs
when two nodes are in a backoff state after sensing that the
channel is busy, and then choose to retry transmission at the
same time. This type of collision can be a large source of
overhead if many nodes are waiting to transmit and we are
using a small p value (or small contention window size in
802.11). However, the rate of these collisions does not depend
on a; it is instead a function of p (or contention window size).
Hence these collisions do not account for the rise in collision
probability with increasing a.

The second type of collision occurs when a node senses the
channel within one propagation delay of another node starting
a transmission (see Figure 6). During this vulnerable period,
the signal from the transmitting node has not yet reached the
sensing node and thus goes undetected. The sensing node sees
the channel as free even though it is actually busy. These
vulnerable periods occur only at the beginning of packet
transmissions and as a increases, they account for a higher
proportion of the time the channel is busy. Thus the likelihood
of sensing the channel during a vulnerable period increases,
resulting in an increased collision probability. In Section V
we will explore this further and derive expressions for the
probability of obtaining incorrect information when sensing
the channel.

Although the Kleinrock and Tobagi model deals with p-
persistent CSMA, the problems discussed in the preceding
sections apply just as much, if not more, to actual CSMA
protocols in use today such as the 802.11 family of protocols.
Figure 7 shows the maximum throughput of p-persistent
CSMA, according to the model in [1], for a variety of
network diameters, packet sizes and data rates. Each of these
parameters contribute to the value of a in a real network: the
data rate and packet size together determine the time taken
to transmit a packet, while the network diameter determines
the maximum propagation delay between any pair of nodes.
Today, with 802.11ac, a data rate of 500Mb/s is achievable
and as can be seen in the figure, the maximum achievable
throughput is poor — even below slotted ALOHA — at small
packet sizes.

V. UTILITY OF CHANNEL SENSING

The primary aim of any MAC protocol is to attempt to sep-
arate transmissions in time such that a node will, ideally, only
transmit when no other node is transmitting. Each node, when
it has a packet queued to send, attempts to determine when
the channel is free for transmission and we can characterise



Fig. 7. Maximum throughput of p-persistent CSMA for different data rates,
network diameters and packet sizes

MAC protocols in terms of the accuracy with which nodes are
able to do this. There are two possible types of errors a node
can make when attempting to determine when to transmit.
It can either incorrectly perceive the channel to be available
when it is not, leading to a collision as two nodes attempt to
transmit at once, or else it can incorrectly perceive the channel
as busy when it is in fact available, leading to wasted time as
the channel lies idle even though there are nodes with packets
queued for transmission. In ALOHA, only the first type of
error is possible since nodes never check whether the channel
is busy but simply assume it to be available at any time, and
only discover in retrospect (due to lack of acknowledgement)
that this was not the case.

The goal of CSMA is to use channel sensing to gather
more information about the channel state before transmitting.
However, the information gathered is not perfect — it does
not exactly match the true channel state at any given time.
Sensing will lag behind the true channel state by the amount
of time it takes a signal to propagate from a transmitting node
to a sensing node. The network diameter, that is, the maximum
distance between any two nodes, gives an upper bound on the
propagation delay. In [1], all pairs of nodes are considered to
have the same propagation delay. This simplifies the analysis
and will result in conservative estimates of the information
gain from performing channel sensing.

We can consider CSMA in terms of two random variables:
the true channel state and the state as sensed by a node.
To determine the accuracy — and hence usefulness — of
the information obtained through channel sensing, we can
take the correlation between the sensed channel state and the
true channel state. Throughout this section, we will discuss
p-persistent CSMA, however, 1-persistent CSMA and non-
persistent CSMA are special cases of this protocol for p = 1
and p = 0 respectively.

Given random variables X and Y with expected values µX

and µY , and standard deviations �X and �Y respectively, the
correlation of X and Y is defined as

a
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Fig. 8. Sensed and true channel states

corr(X,Y ) =
E [(X � µX) (Y � µY )]

�X�Y

Let the true channel state be denoted C and the channel state
as sensed by a node be denoted Z. Each of these variables
can take two possible values: busy or idle. C will be busy
whenever any node in the network is transmitting, even if
this transmission has not yet reached any other node, and idle
otherwise. Z is node-dependent and will be busy whenever
the signal received at a node is above the SINR threshold
for the channel to be considered busy, and idle otherwise.
Here we will neglect effects such as channel noise, multipath
propagation, etc. and assume an ideal channel. Let 1 represent
a busy state and 0 represent an idle state (for either variable).
Since Z is actually the same process as C, just one propagation
delay behind, we have Z(t) = C(t � a), and in steady state,
then, µZ = µC = µ and �Z = �C = �.

We can take the correlation of C and Z.

corr(C, Z) =

P
c2{0,1},z2{0,1}(c� µ)(z � µ)P (C = c, Z = z)

�2

(1)

This is equivalent to the autocorrelation of C with a time
delay equal to the propagation delay, however when deriving
the probabilities to satisfy Equation 1 it is helpful to consider
Z and C separately.

In order to derive an expression for corr(C, Z), we need to
find the following:

• µ
• �
• P (C = 1, Z = 1): the probability that the channel is

busy and is sensed as busy
• P (C = 0, Z = 1): the probability that the channel is idle

but is sensed as busy
• P (C = 1|Z = 0): the probability that the channel is busy

but is sensed as idle
• P (C = 0, Z = 0): the probability that the channel is idle

and is sensed as idle
To determine these values, we can consider the cycle of

busy and idle periods that the channel goes through under p-
persistent CSMA, depicted in Figure 1. (See Section III for
a more detailed explanation of this protocol.) A busy period
consists of m transmission periods (TPs), each of which may
result in either a successful packet transmission or a collision.
The average times spent in busy and idle periods are derived



in [1] and denoted by B̄ and Ī respectively. Note that as with
all other time expressions, these are normalised to the packet
transmission time.

B̄ = at̄0 +
at̄ (1� ⇡0) + 1 + a

⇡0
(2)

Ī =
a

1� e�g
(3)

The probability that the number of TPs in a busy period is
equal to m is ⇡0 (1� ⇡0)

m�1, for m 2 Z>0 [1], and so we
can find m̄ by taking the average over this distribution.

m̄ =
1X

m=1

m⇡0 (1� ⇡0)
m�1 (4)

As a busy period must have at least one TP, m is always at
least 1.

This is an arithmetico-geometric series and so we can
compute this sum:

m̄ = ⇡0

✓
1

1� (1� ⇡0)

◆
+

(1� ⇡0)⇥ 1
(1� (1� ⇡0))

2

= ⇡0

✓
⇡0 + 1� ⇡0

⇡0
2

◆

= ⇡0

✓
1

⇡0
2

◆

=
1
⇡0

. (5)

When sensing the channel, the probability that it is sensed
busy or idle will be equal to the probability of the channel
actually being busy or idle, since the sensed channel state is
simply the channel state one propagation delay earlier. Thus if
we sensed the channel constantly, the proportions of time we
would sense busy and idle states is equal to the proportions of
time the channel actually spends busy and idle. We therefore
have

P (Z = 1) = P (C = 1)

and
P (Z = 0) = P (C = 0).

The channel is in a busy state only during a TP (excluding the
final propagation delay after transmission ends), with m̄ TPs
per cycle on average. Hence the proportion of time the channel
is busy (or, equivalently, the probability that the channel is
busy in steady state) is

P (C = 1) =
m̄

B̄ + Ī
. (6)

The probability that the channel is idle is then

P (C = 0) = 1� P (C = 1)

= 1� m̄

B̄ + Ī
. (7)

Next we will derive the conditional probabilities for the
channel state given a particular sensed state (see Figure 8).

First consider the case that the channel is sensed busy, i.e.
Z = 1. The channel is sensed busy during a TP after the initial
propagation delay. The duration of a TP is 1+a and since we
are subtracting one propagation delay from the beginning, we
are left with a duration of 1. Of this time, the channel is only
actually busy during the transmission itself, whereas during
the propagation delay (of length a) at the end, the channel is
actually idle. Hence we have

P (C = 1|Z = 1) = 1� a (8)

and
P (C = 0|Z = 1) = a. (9)

To determine the channel state probabilities conditioned on
the channel being sensed idle, we must first determine the
total time the channel could be sensed as idle. This can either
occur within one propagation delay of the beginning of a TP,
or whilst the channel is idle and it has been longer than a
propagation delay since the end of a TP. The first case occurs
on average m̄ times per cycle, and is of length a each time,
giving a total time of am̄. The second case can occur either
during an idle period, of length Ī (note that an idle period
does not begin until one propagation delay after the last TP of
a busy period), or during a busy period while nodes waiting to
transmit are in backoff. The average length of the backoff time
is at̄ (t̄ slots of length a each) and this occurs m̄ � 1 times
per cycle (between each pair of consecutive TPs). Hence the
total time a constantly sensing node would see the channel as
idle per cycle is

Sensed idle time = Ī + (m̄� 1]at̄ + am̄. (10)

Of this time, the channel is actually busy during the vulner-
able periods (am̄) and idle otherwise. Hence

P (C = 1|Z = 0) =
am̄

Ī + (m̄� 1]at̄ + am̄
(11)

and
P (C = 0|Z = 0) =

Ī + (m̄� 1]at̄

Ī + (m̄� 1]at̄ + am̄
. (12)

We can now determine the joint probability distribution of
C and Z. The joint probabilities are:

P (C = 0, Z = 0) = P (C = 0|Z = 0)P (Z = 0)

=
Ī + (m̄� 1]at̄

Ī + (m̄� 1]at̄ + am̄

✓
1� m̄

B̄ + Ī

◆

(13)

P (C = 1, Z = 0) = P (C = 1|Z = 0)P (Z = 0)

=
am̄

Ī + (m̄� 1]at̄ + am̄

✓
1� m̄

B̄ + Ī

◆

(14)

P (C = 0, Z = 1) = P (C = 0|Z = 1)P (Z = 1)

= a
m̄

B̄ + Ī
(15)



Fig. 9. Probability of obtaining incorrect information from channel sensing

P (C = 1, Z = 1) = P (C = 1|Z = 1)P (Z = 1)

= (1� a)
m̄

B̄ + Ī
. (16)

Channel sensing will provide a node with incorrect informa-
tion about the channel state whenever Z 6= C, which occurs
with probability P (C = 0, Z = 1) + P (C = 1, Z = 0).
Figure 9 shows this probability as a function of the propagation
delay and offered load, for p = 0.1. At low offered loads, the
probability of obtaining incorrect information from channel
sensing remains low even with a high propagation delay, since
the channel is idle almost all the time. When a is small, the
probability of incorrect information from sensing also remains
low regardless of offered load since sensing provides accurate
information nearly all the time. However, once we have even
a moderate offered load, the chances of sensing an incorrect
channel state increase with the propagation delay. Note that at
high offered loads, the channel state is not actually busy all
the time, since the slot time is equal to a and the channel will
be idle for some number of slots (depending on the persistence
value) between transmissions.

To find the correlation between sensed channel state and
true channel state, we also need expressions for µ and �.

µ = E[C]
= 0⇥ P (C = 0) + 1⇥ P (C = 1)
= P (C = 1)

=
m̄

B̄ + Ī
(17)

� =
p

E[C2]� (E[C])2

=
p

E[C]� (E[C])2 (since the range of C is {0, 1})

=
p

µ(1� µ)

=

s✓
m̄

B̄ + Ī

◆ ✓
1� m̄

B̄ + Ī

◆
(18)

Fig. 10. Correlation between true and sensed channel state

The correlation of C and Z is then given by

corr(C, Z) =

P
c2{0,1},z2{0,1}(c� µ)(z � µ)P (C = c, Z = z)

�2

=

(0� µ) (0� µ) P (C = 0, Z = 0)
+ (0� µ) (1� µ) P (C = 1, Z = 0)
+ (1� µ) (0� µ) P (C = 0, Z = 1)
+ (1� µ) (1� µ)P (C = 1, Z = 1)

�2
(19)

where the individual terms are as given in Equations 13–18.
A plot of corr(C, Z) as a function of propagation delay and

offered load is shown in Figure 10. We can consider this as a
measure of the utility of performing channel sensing. For small
a, channel sensing is of high utility (although this decreases as
the offered load increases, forcing the channel into a saturated
state). As the packet transmission time decreases relative
to the propagation delay, i.e. a increases, we are looking
further back into the past when performing channel sensing,
relative to the timescale at which data is being transmitted.
Channel sensing then becomes of no or even negative utility
— nodes begin obtaining and acting on incorrect information
and would instead achieve better performance by transmitting
based solely on random chance as in ALOHA.

VI. BEYOND CSMA
As we have shown above, the main problem when a be-

comes large is that, in effect, all information obtained through
channel sensing is old and not reliable. The main challenge
is thus to improve the reliability of the information used for
the access mechanism (minimise the likelihood of obtaining
incorrect information).

Increasing the reliability can be achieved in two different
ways: through sampling and prediction using signal processing
and machine learning strategies or by increasing coordination
and information exchange among the nodes. The effectiveness
of each strategy will depend on the randomness of the frame
generation process: a highly regular process will lend itself to
learning strategies as they impose no overhead and no coor-
dination. As the randomness increases coordination becomes
more effective but it comes at a price of overhead and lost
flexibility.



A main consideration is that both these classes of strategies
can be implemented using legacy CSMA underneath, i.e. any
MAC standard becomes backwards compatible. It is also a way
of continuing the use of the simplistic CSMA mechanism by
improving the information quality so it remains effective.

VII. CONCLUSION

In this paper we have investigated the effects of increasing
data rates and small packet sizes on the performance of
CSMA. We have analysed the utility of performing channel
sensing in terms of the probability of obtaining incorrect infor-
mation about the channel state and shown that this probability
increases dramatically as the propagation delay approaches the
packet transmission time.

With the continued push for higher raw data rates in 802.11
and changing traffic patterns towards a greater proportion
of real-time and uplink traffic, we are reaching the limits
of carrier sensing as a means for medium access control in
wireless LANs. We are approaching a situation in which in
some cases CSMA will perform no better than pure random
access as in slotted ALOHA. We thus need a new approach
to wireless MAC protocols, towards greater co-ordination
and information exchange between nodes that will enable
us to predict the channel state rather than using retroactive
information as with channel sensing.
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Abstract—Wireless sensor networks have gained considerable

interest in the last few years, serving a large number of appli-

cations. Data collection efficiency is of paramount importance

as sensors are severe resource-constrained devices. Furthermore,

current protocol inefficiencies lead to significant packet loss. In

this work, we minimize the necessary information sensors trans-

mit by applying the compressed sensing principles. Moreover,

missing information due to packet loss is efficiently recovered

using the matrix completion theory. The performance evaluation

shows that when these advanced signal processing techniques

are jointly used, the reconstruction error is small for high

compression ratios, and fairly high packet loss. At the same

time, the total energy consumption of the network substantially

decreases.

Index Terms—wireless sensor networks, compressed sensing,

matrix completion, reconstruction error, performance evaluation,

energy consumption.

I. INTRODUCTION

Wireless sensor networks (WSNs) have gained considerable
interest in the last few years mainly due to the advances
of the technology regarding the electromechanical systems
(EMS). EMS technology has enabled the design of off-the-
shelf miniature sensors with enhanced processing capabilities
and memory. This, along with the deployment and standard-
ization of energy-efficient network protocols like the IEEE
802.15.4, 6LowPan, etc., have given a considerable boost to
WSN deployment for a large number of applications.

WNSs consist of tens or hundreds of miniature sensors
that sense information from the surrounding environment.
Typical WSN applications involve the measurement of the
ambient temperature, light, humidity, barometric pressure,
acceleration, velocity, acoustics, magnetic field, etc., [1]. As
sensors are severe resource-constrained devices in terms of
memory, processing, and energy, they usually do not perform
any sophisticated computations on the sensed information;
rather, they transmit it to a more powerful device, called as
sink, for further processing. There are several data delivery
models used for information flow between the sensors and
the sink: (i) periodic-based where sensors periodically send
their sensed data to the sink, (ii) event-driven, where data are
transmitted to the sink only after an event has taken place
(e.g. fire), (iii) query-driven, where the sink requests data from
the sensors, and (iv) hybrid model that combines mechanisms

from a subset of the previous models. The choice of the
suitable model depends on the application served by the WSN.

Nowadays, WSNs are used for a large number of purposes
like environmental monitoring [2], critical infrastructure pro-
tection [3], emergency response and disaster relief [4], life-
logging [5], health monitoring [6], surveillance [7], water-use
efficiency [8], earthquake localization [9], structural damage
detection [10]. One of the most important advantages of
WSNs is that they can be easily deployed in large and harsh
environments and operate unattended.

Unlike traditional wireless networks, WSNs have several
limitations because of the resource-constrained nature of the
sensors, and the low bandwidth characteristic of the communi-
cation protocols used (e.g. IEEE 802.15.4). For these reasons,
the design of energy-efficient mechanisms is of paramount
importance as they can substantially prolong WSNs lifetime.
There has been considerable interest in the design of energy-
efficient mechanisms for data collection. Data collection is
referred to the process where the sink collects the sensed
data using one of the delivery models referred previously.
Data collection mainly involves packet transmissions from the
sensors to the sink, and as shown in the literature ([11]), most
of the sensors’ energy is consumed for the listen and transmit
operations. For transmission, a sensor has to first sense the
channel (in case a carrier-sense protocol is used) using its
RF (radio-frequency) circuit, and if it is free, to transmit its
packet. If it is not free, it enters a back-off stage. If transmis-
sion attempts result to collisions, packet re-transmission takes
place. For the listen operations, every sensor spends energy
to decode and further accept or reject a transmitted packet.
Due to the broadcast nature of the wireless medium, a sensor
consumes energy for every packet transmitted by its one-hop
neighbors, even if this sensor is not addressed as the receiver
of the transmitted information.

In order to minimize the transmit and listen operations’
overhead, several techniques like source coding, lossy com-
pression, in-network aggregation etc., have been proposed in
the literature. In this work, we use the relatively new theory of
compressed sensing (CS) [12]; compressing the sensed data in
each sensor prior to transmission to the sink. Taking advantage
of the intra-temporal correlation of sensor measurements, we



show that with CS, the reconstruction (de-compression) error
at the sink is small, while energy spending substantially
decreases.

A significant flaw of WSNs is the high packet loss expe-
rienced due to the bandwidth limitations and the resource-
constrained nature of the sensors. In this paper, by taking
advantage of the inter-spatial correlation of the sensed data,
we show that information recovery is possible with high per-
formance, in case of packet loss, using the matrix completion
principles [13].

Our main contributions are as follows:

• we use compressed sensing to compress the sensed data
at each sensor prior to transmission to the sink,

• we utilize the matrix completion principles in order to
recover the missing information due to packet loss,

• we evaluate the above techniques in a simulated environ-
ment showing that the reconstruction error is low, while
a significant amount of energy is saved.

The rest of this work is organized as follows. Section II
and Section III give the background on compressed sensing
and matrix completion, respectively. Section IV describes how
compressed sensing and matrix completion are used jointly.
In Section V we describe the simulation testbed and present
performance evaluation results. Related work is described in
Section VI. Finally, conclusions appear in Section VII.

II. COMPRESSED SENSING FOR THE INTRA-TEMPORAL
CORRELATION

The recently introduced theory of CS exploits the structure
of a signal in order to enable a significant reduction in the
sampling and computation costs. In the context of a WSN,
suppose that x 2 RN is a signal referred to the sensed data
of an individual sensor. CS theory proves that if x is sparse
in some domain, it can be reconstructed exactly with high
probability from M randomized linear projections of signal
x into a measurement matrix � 2 RM⇥N , where M ⌧ N .
A signal is called sparse if most of its elements are zero in
a specific transform basis. The discrete signal x 2 RN can
be expressed in terms of a sparsifying basis (dictionary)  of
N ⇥ 1 vectors { N

i=1} such that:

x =  b (1)

where b 2 RN is a sparse vector with S non-zero components
(kbk0 = S). The general measurement model is expressed as
follows:

y = �x = � b = ⇥b (2)

where ⇥ =  �. Essentially, each sensor instead of transmit-
ting a signal x 2 RN , it performs CS and finally transmits a
smaller signal y 2 RM .

The original vector b and consequently the sparse signal
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Figure 1: Ambient temperature measured by a single sensor

x, is estimated by solving the following `0-norm constrained
optimization problem:

ˆ

b = argmin kbk0 s.t. y = ⇥b (3)

where the kbk0 norm counts the number of non-zero compo-
nents of b. As solving (3) is both numerically unstable and
NP-complete, reconstruction is performed following the norm
convex relaxation problem:

ˆ

b = argmin kbk1 s.t. y = ⇥b. (4)

The `1 norm (kbk1 :=

P
i

|b
i

|) can exactly recover the
S-sparse signal with high probability using only M �
CS log(N/S) measurements (C 2 R

+) [12]. Finally, the
reconstructed signal is given by ˆ

x =  

ˆ

b.

Figure 1 shows the ambient temperature measured by a
sensor (with a period of 30 seconds) of the WSN described
in [14]. Although the temperature may change during the day,
there are however time periods where it does not significantly
change. This reveals the intra-temporal correlation of the data
sensed at each individual sensor. We exploit this property and
use CS to compress the original sensed data of equally-sized
blocks of size N . Later in the evaluation, we select N = 100

that corresponds to a time period of 50 minutes.

III. MATRIX COMPLETION FOR THE INTER-SPATIAL
CORRELATION

Bandwidth limitations and the resource-constrained nature
of the sensors often cause high packet loss during the operation
of a WSN. Packets are mainly lost due to collisions in the
wireless medium, buffer overflows, protocol inefficiencies (e.g
MAC, routing), etc. We attempt to recover the information
carried by the lost packets using a new signal processing
theory called as matrix completion (MC). Assume that there is
a WSN consisting of S

i

sensors where i 2 [1, k]. All sensors
report their measurements to a sink every �

t

seconds, trans-
mitting a single packet for each measurement they perform.
Each transmitted packet carries a packet id (assigned by its
originating sensor) that is incremented for every new packet.
The sink creates a table accumulating the measurements sent
by the sensors (Table I). The table boxes that contain the
symbol (?) denote the information carried by the packets that
were lost in the WSN.



TABLE I: Measurement collection at the sink with missing
information

packet id

Sensor id

S1 S2 ... S

k

1 10.22 ? ... 11.22
2 10.33 9.12 ... 11.45
3 1.23 ? ... 11.56
4 ? 9.54 ... ?

5 ? 9.12 ... 11.12
... ... ... ... ...

Actually, the sink does not receive the ambient temperatures
measured at the sensors (x 2 RN ), but it receives their com-
pressed versions (y 2 RM ). Therefore, each column of Table I
contains the compressed values (according to CS principles)
transmitted by the corresponding sensor. The problem now is
to recover the missed values of the matrix (Table I) by using
the present ones. MC theory proves that if this matrix (denoted
by M 2 Rn⇥k) has a low rank (defined as the maximum
number of independent columns or rows), it can be recovered
with high probability. More interestingly, one can recover M

from s � Cd

6/5
rlog(d) random measurements, where C is

a positive constant, d = max(n, k) and r is the rank of the
matrix.

Suppose M 2 Rn⇥k is the unknown matrix we want
to recover. As packet loss occurs in the network, the only
information available about M is a set of entries M 2 Ri⇥j ,
(i, j) 2 ⌦, where ⌦ is the full set of entries n⇥k. At the sink,
the available information can be summarized using P⌦(M),
where the sampling operator (due to packet loss) is defined
by:

[P⌦(X)]

ij

=

⇢
X

ij

, if (i, j) 2 ⌦

0, otherwise (5)

We will try to recover matrix M using information P⌦(M).
If M 2 Rn⇥k is a low rank matrix, one could recover it by
solving [13]:

minimize rank(X)
subject to P⌦(X) = P⌦(M)

(6)

However, (6) is both unstable and NP-hard, hence it cannot be
easily used in practice. A widely used alternative is the convex
relaxation:

minimize k X k⇤
subject to P⌦(X) = P⌦(M)

(7)

where k X k⇤ denotes the Frobenius norm of X .

IV. JOINT COMPRESSED SENSING AND MATRIX
COMPLETION

Figure 2 depicts how CS and MC are used jointly. Each
sensor, splits its sensed data into equally-sized blocks of length
N . Then, for each block, using CS with a compression ratio
equal to 100 ⇥ N�M

N

, it produces a compressed signal y of
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Figure 2: Joint use of compressed sensing and matrix comple-
tion techniques

length M (using (2)) that is smaller than its uncompressed
version x. Signal y is transmitted to the sink using a total
number of M packets. In this paper, we use a Gaussian
distribution for matrix �, and FFT as the basis for matrix
 . Several works have shown that these matrices have the
necessary properties (incoherence) in order to achieve high
performance in terms of the reconstruction error.

The sink receives and stores the packets transmitted by
the sensors in its memory, and creates a table similar to
Table I. As WSNs are lossy networks, the created table has
a number of missing entries, depending on the packet loss.
The missing entries are recovered applying MC using (7). For
MC recovery, we use the Singular Value Thresholding (SVT)
algorithm [15]. After table recovery, de-compression takes
place for the data of each individual sensor using CS through
(4). For CS reconstruction, a variety of algorithms based on
linear programming, convex relaxation, and greedy strategies
have been proposed to solve (4). Here, we use the Orthogonal
Matching Pursuit (OMP) strategy [16] as it is computationally
very efficient.

V. WIRELESS SENSOR NETWORK TESTBED AND
PERFORMANCE EVALUATION

For the network testbed we use 32 Z1 sensors [17], and
a single sink, in a simulated environment shown in Fig-
ure 3. Sensors run the Contiki operating system [18], con-
trolled by Cooja, Contiki’s simulator/emulator. The sensors are
pre-loaded with ambient temperature measurements provided
by [14]. During simulations, sensors compress the tempera-
ture measurements with CS using one out of three possible
compression ratios (25%, 50%, and 75%). The compressed
measurements are transmitted to the sink using a suitable
protocol over UDP. We vary the transmitted packet rate so
as to create an average packet loss in WSN that varies from
10% to 80%, with a step of 10%. We repeat each experiment
50 times.

Figure 4 shows the MC recovery error (MC

err

) for different
compression ratios and average packet loss. MC

err

is defined
as MC

err

=

||M�X||2
||M ||2 , where X is the recovered matrix,

and M the matrix if there were no packet loss. The vertical
lines on this figure show the 95% confidence interval. Observe



Figure 3: Simulated wireless sensor network testbed

that as the packet loss increases, MC

err

increases as less
information is available for a successful recover. Furthermore,
as the CS compression ratio increases, MC

err

increases for
the same average packet loss. This happens because a higher
compression ratio results in a smaller matrix at the sink.
The size of the matrix directly affects its rank that it further
affects MC performance. The smaller the matrix, the less the
correlated information, hence the higher its rank.

Next, we investigate CS reconstruction error (CS

err

),
defined as CS

err

=

||x�x̂||2
||x||2 . CS reconstruction (or de-

compression) takes place after MC recovery (Figure 2). Fig-
ure 5 shows the cumulative density function (CDF) of CS

err

for different compression ratios and packet loss. As the com-
pression ratio increases, CS

err

increases. Moreover, for the
same compression ratio, CS

err

increases as the packet loss
increases. This is because MC recovery (due to the smaller
matrix size) has a lower performance that directly affects CS
performance. However, observe that even for a relatively high
packet loss (40%) CS

err

is less than 0.1 for the majority
of the sensors (about 80%). This means that signal fidelity
can reach 90% in such lossy environments when CS and MC
are used. For an even higher packet loss and compression
ratio, performance deteriorates. Nevertheless, the tolerance for
a specific CS

err

depends on the application that uses the
sensed data. Figures such as Figure 4 can assist a network
operator to choose the suitable compression ratio that better
fits specific application requirements.

Next, we measure the power consumption of the WSN for
a 3 hours period. We vary the compression ratio, while the
transmission packet rate has been selected so as to have a
40% average packet loss in WSN. The power consumption is
measured using powertrace [19], a built-in power measurement
module of Contiki. Figure 6 shows the total power consump-
tion of WSN when no CS is used, and for CS with the various
compression ratios. The error bars show the 95% confidence
intervals. Observe that as the compression ratio increases,
network’s power consumption significantly decreases. This is
because less packets are transmitted into the network, hence
less power is consumed.
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(c) Compression ratio: 75%

Figure 4: MC recovery error for different compression ratios
and packet loss

VI. RELATED WORK

Several contributions exist in the literature involving com-
pressed sensing, and matrix completion techniques. CS has
been used for data compression or event detection in several
works ([20], [21], [22], [23]. However, these contributions
do not consider the significant packet loss that can occur in
lossy networks such as WSNs. Regarding MC, works ([24],
[25]) study the efficiency in data collection. All the above
contributions use either MC or CS. On the contrary, we use
these techniques jointly and show how missing information is
recovered using MC, and how energy consumption reduces by
applying CS.

VII. CONCLUSIONS

In this work, we used the matrix completion theory to
recover missing information due to packet loss. Furthermore,
we deployed the compressed sensing theory in order to reduce
the communication overhead within the sensor network. The
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Figure 5: CS reconstruction error for different compression
ratios and packet loss
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Figure 6: WSN total power consumption

evaluation results show that compressed sensing jointly with
matrix completion, give a small reconstruction error for fairly
high compression ratios and for a significant packet loss.
Missing information is sufficiently recovered, and the total
energy consumption of the sensors substantially reduces.
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Abstract—The recent advances in micro-sensor hardware tech-
nologies, along with the invention of energy-efficient protocols,
have enabled a world-wide spread in wireless sensor networks
deployment. These networks are used for a large number of
purposes, while having small maintenance and deployment costs.
However, as these are usually unattended networks, several
security threats have emerged. In this work, we show how an
adversary can overhear the encrypted wireless transmissions,
and detect the periodic components of the wireless traffic that
can further reveal the application used in the sensor network.
Traffic analysis is performed in a very energy-efficient way using
the compressed sensing principles. Furthermore, the periodic
components are detected using the Lomb-Scargle periodogram
technique.

Index Terms—compressed sensing, malicious traffic analysis,
signal processing, energy-efficiency, wireless sensor networks,
Lomb-Scargle periodogram, Contiki

I. INTRODUCTION

The recent advances in micro-electro-mechanical systems
and low power and highly integrated digital electronics, have
enabled the development of low-cost micro-sensors. These
devices are used for measuring a number of physical attributes
such as temperature, light, humidity, barometric pressure,
acceleration, velocity, acoustics, magnetic field, etc [1]. The
sensors are not used in isolation but are grouped into the
so-called motes. Motes are integrated devices (e.g. [2]) that
contain CPU and memory functionalities under a common
board. The advances in sensor operating systems (e.g. Contiki,
TinyOS) along with the standardization of new protocols (e.g
IEEE 802.15.4, Zigbee) and the adoption of already existing
networking protocols (IPv4/IPv6), have made feasible the
deployment of wireless sensor networks (WSNs).

Nowadays, WSNs are used for a large number of purposes
such as for environmental monitoring [3], critical infrastruc-
ture protection [4], emergency response and disaster relief [5],
life-logging [6], health monitoring [7], surveillance [8], water-
use efficiency [9], earthquake localization [10], structural
damage detection [11], etc. Their main advantage is that they
are easily deployed in large and harsh areas. Information is
sensed and collected by (often) battery-operated motes, and

transmitted through a multi-hop routing scheme to a central
server, known as sink, for further processing. The sink is
a node with enhanced hardware capabilities that performs
the more complex tasks required, as motes themselves are
severe-constrained devices in terms of processing, storage,
computation, and power.

As WSNs become worldwide, their security issues have
become a major concern. WSNs face a number of security
threats at different layers such as: (i) jamming (interference)
attacks at the physical layer, (ii) guaranteed time slot attacks at
the medium access layer, (iii) sinkhole, wormhole and other
routing attacks at the network layer. A number of counter-
measures have been introduced for thwarting these attacks,
mainly focusing on intrusion detection, and cryptographic
schemes [12].

Except the aforementioned attacks that are successfully
detected and mitigated using intrusion detection schemes,
another type of attack, the malicious traffic analysis attack,
cannot be detected and easily mitigated. In this attack, an
adversary has the role of a passive listener that collects
information from the network, and tries to detect and identify
different periodic components in the captured network traffic.
Essentially, the ultimate scope of the adversary is to detect
information such as the type of applications that execute in
the WSN, the paths related to the routing algorithm, etc. Such
an information disclosure can severely violate the privacy and
security of information-sensitive applications, like those used
in wireless body area sensor networks [13]. In this work, we
show how an adversary by using advanced signal processing
techniques, can effectively detect the periodic components
in the network traffic in a very energy-efficient way. Traffic
analysis is performed using the Lomb-Scargle periodogram
(LSP) technique, while power consumption reduces through
the use of the compressed sensing (CS) principles.

Related work focuses on the study of traffic analysis that
reveals periodic patterns of the captured traffic. As the au-
thors in [14] show, signal processing techniques can be very
effective in traffic analysis. We complement this work by con-



sidering an adversary that by using CS, significantly reduces
the power consumption required for traffic analysis. Other
contributions like [13], [15], [16], propose countermeasures
against malicious traffic analysis. On the contrary, we work on
the attacker side and show how it can perform energy-efficient
malicious traffic analysis.

The rest of this work is organized as follows. Section II
describes signal processing techniques appropriate for traffic
analysis. In Section III we give the background on CS theory.
Section IV presents the adversary model, while the perfor-
mance evaluation is shown in Section V. Finally, conclusions
appear in Section VI.

II. TRAFFIC ANALYSIS USING SIGNAL PROCESSING
TECHNIQUES

Very often in communication networks, when information
has to be protected by eavesdroppers, security primitives
like encryption, authentication, and data integrity are used.
A second level of protection usually follows with intrusion
detection schemes. This is more imperative in WSNs, due
to the broadcast nature of the wireless medium. However,
regardless the strength of the security algorithm, and the
effectiveness of the intrusion detection system, an adversary
can still overhear the wireless channel and identify different
periodic components by observing the encrypted traffic. These
observations will allow him later to infer regarding the appli-
cations used or the routing algorithm decisions taken.

The key idea for identifying periodic components in an
encrypted traffic is to convert packet traces into signals, and
then process these signals using appropriate signal processing
techniques [14]. This will allow the identification of prominent
recurring frequencies and time-periods. A common spectral
processing technique used for periodic component identifica-
tion is the standard Discrete Fourier Transform (DFT). DFT
computes the spectral power densities and requires the encoded
signal to be uniformly sampled. Supposing there is a uniformly
sampled signal x(n) with N samples, DFT gives a N-point
discrete spectrum X

N

(k), where

X
N

(k) =

N�1X

n=0

x(n) ⇤ e�j2⇡kn/N
= DFT [x(n)] (1)

X
N

(k) can be computed using the Fast Fourier Transform
(FFT), and the resulted peaks in the spectrum correspond
to the periodic components in the observed traffic. However,
the resulted spectrum can contain many harmonically related
peaks and furthermore, it does not provide a good unbiased
estimate in the presence of noise [13]. Another technique
available, the Welch Averaged Periodogram [17] (WAP) can
give more reliable results, as periodograms’ main characteris-
tic is that they can perform well in the presence of noise or
interference [14]. WAP utilizes averaging in order to reduce
noise influence, and is generated by averaging the K separate

spectra X
(r)
N

, computes over K different segments of data,
each of length L ( N )

P
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1
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2
(n), where the windowed data x

r

(n) is the
rth windowed segment of x(n), w(n) is a windowing
function that reduces the artifacts caused by the abrupt
changes at the end-points of the window, and U is the
normalized window power. The peaks given by P

x

are real
values that correspond to frequencies of event times of arrival.

As mentioned before, WAP can be efficiently used in
order to detect periodic events in the presence of noise or
interference. The authors in [13] use WAP for the detection
of periodic events in a simulated single-hop wireless body
area sensor network using the packet time arrivals. However,
as packet arrivals in communication networks are inherently
unevenly spaced, they result in a signal encoding that is also
unevenly spaced. The FFT and WAP methods perform well
only when the packet arrivals are evenly spaced. In order to
overcome this limitation and perform efficient traffic analysis,
a method called as the Lomb-Scargle periodogram (LSP) can
be used. LSP is a spectral analysis technique designed for
data that are unevenly spaced. Compared to the WAP and FFT
techniques, although LSP requires more computational power,
it has the added advantage that the input data are sparse, hence
they consume less memory [14].

The LSP technique estimates a power spectrum of N points
of data for arbitrary angular frequencies. The power density
for an angular frequency ! is given by:

P
N

(!) =
1

2�2
{
[

P
n

(h
n

� ¯h) cos!(t
n

� ⌧)]2P
n

cos

2 !(t
n

� ⌧)
+

[

P
n

(h
n

� ¯h) sin!(t
n

� ⌧)]2
P

n

sin

2 !(t
n

� ⌧)
} (3)

where

¯h =

1

N

N�1X

n=0

h
n

� =

1

N � 1

N�1X

n=0

(h
n

� ¯h)

⌧ =

1

2!
tan

�1
(

P
n

sin 2!t
nP

n

cos 2!t
n

)

The samples h
n

, n 2 [0, N � 1], are the N unevenly spaced
samples of the observed signal at times t

n

.

In Section IV we show how the LSP technique is used to



reveal the packet flows traversing a simulated WSN. As we are
primarily concerned with energy-efficient traffic analysis, the
LSP method is used jointly with CS for reducing the number
of data required to detect the network flows. In the next section
we describe the background on CS theory.

III. COMPRESSED SENSING BACKGROUND

The recently proposed theory of compressed sensing (CS)
([18]) unifies compression and encryption in order to minimize
the overhead for data acquisition and sampling in a WSN. CS
exploits the signal structure in order to enable a significant
reduction in the sampling and computation costs at a central
unit. The key principles in the development of CS theory are
sparsity and incoherence. A signal x 2 RN is called sparse
if most of its elements are zero in a specific transformation
basis. Incoherence satisfies the fact that the sampling/sensing
waveforms have an extremely dense representation in the
basis. Assuming signal x 2 RN is sparse in a basis  , it
can be written as x =  b, where b 2 RN is a sparse vector
with S non-zero components (kbk0 = S). CS theory proves
that an S-sparse signal x can be reconstructed exactly with
high probability from M randomized linear projections of the
signal x into a measurement matrix � 2 RM⇥N . The general
measurement model is expressed as follows:

y = �x = � b = ⇥b (4)

where ⇥ =  �.

The original vector b and consequently the sparse signal
x, is estimated by solving the following `0-norm constrained
optimization problem:

ˆ

b = argmin kbk0 s.t. y = ⇥b (5)

where the kbk0 norm counts the number of non-zero com-
ponents of b. Note that the formulation of the optimization
problem in (5) uses an l0 norm that measures signal sparsity
instead than the traditionally used in signal processing ap-
plications l2 norm, which measures signal energy. However,
solving (5) is both numerically unstable and NP-complete. For
this reason, the `0 norm can be replaced by the `1 norm and
problem (5) can be rephrased as the following `1 norm convex
relaxation problem:

ˆ

b = argmin kbk1 s.t. y = ⇥b. (6)

The `1 norm (kbk1 :=

P
i

|b
i

|) can exactly recover the
S-sparse signal with high probability using only M �
CS log(N/S) measurements (C 2 R+) [18]. Finally, the
reconstructed signal is given by ˆ

x =  

ˆ

b. A variety of re-
construction algorithms based on linear programming, convex
relaxation, and greedy strategies have been proposed to solve
(6). Among them, greedy strategies such as the Orthogonal
Matching Pursuit (OMP) [19] are computationally efficient
when the signal of interest is highly sparse.
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Figure 1: Wireless sensor network topology

IV. ADVERSARY MODEL

The adversary model we consider in this work consists of
two distinct entities: (i) the malicious client (MC), and (ii) the
malicious server (MS).

MC is a mote with constrained resources (CPU, memory,
power) that is positioned in a strategic location within a
WSN. Its mission is to observe the wireless traffic and record
the timestamps of the captured packets. For this to become
feasible, its network interface card is set to promiscuous
mode. MC periodically encodes a signal derived from the
packet timestamps and compress it, before transmitting it
to a more advanced, in terms of resources node (malicious
server), for further processing. Figure 1 shows a simulation
testbed with two legitimate motes, a single legitimate sink,
and the adversary entities (the dotted circles symbolize the
transmission ranges of the motes and the MC). MC and MS
communicate through a dedicated encrypted malicious control
channel (MCC). As it concerns the legitimate WSN, motes
periodically transmit sensed data to the sink using different
packet transmission rates. Mote-1 transmits with a rate of 10
packets/sec (Flow-1), while Mote-2 transmits with a rate of 17
packets/sec (Flow-2). Therefore, the transmission frequencies
of Flow-1 and Flow-2 are 0.1 and 0.059, respectively. The
two motes, the sink, and the MC use ContikiOS [20], an open
source operating system for WSNs. The testbed is simulated
using Cooja, Contiki’s simulator/emulator, while the traffic
from the motes towards the sink is encrypted using IPsec [21].

The scope of this paper is to show that MC, jointly with
MS can perform energy-efficient malicious traffic analysis.
MC records data from the captured traffic that are transmitted
to the MS for further processing. As it will be shown later,
MS uses the LSP technique (Eq. 3) in order to detect the
periodic components of the captured traffic. The malicious
traffic analysis is first initiated by MC performing several
tasks. First, it overhears the wireless channel, recording the
timestamps of the captured packets. Then, it encodes the
recorded timestamps into a signal that is suitable for spectrum
analysis by the MS using the LSP technique. For this specific
case, where two motes are available, we encode the recorded
timestamps by assigning an amplitude of +1 for the packets
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Figure 2: Encoded signal derived from the timestamps of the
observed traffic

belonging to Mote-1, and -1 for the Mote-2 packets. Figure 2
shows an example of an encoded signal produced by MC for
a 150 seconds packet trace.

After signal encoding takes place, MC compresses the en-
coded signal using the CS principles in order to minimize the
communication cost with the MS. As MC is a severe resource
constrained device, saving energy is of paramount importance.
It is well known that most of the energy consumption in
WSNs is caused by the transmission and listening operations
performed by the motes. In this paper, we minimize the energy
spending due to the transmission operations between the MC
and the MS, by compressing the encoded signals in MC using
CS. Later on, MS decompresses the signal and feeds the LSP
algorithm. As mentioned in Section III, in order to compress
a signal x 2 RN , it has to be sparse in some basis  , and
it should be written as x =  b. Unfortunately, although the
encoded signal is sparse in the basis  = LSP , it cannot be
expressed as a linear function by using LSP as the orthonormal
basis  . For this reason, we follow a different strategy, by
compressing the encoded signal at MC by using the FFT
transform as the  basis. We have verified that the encoded
signal is also sparse in the frequency domain using FFT. When
the MS receives the compressed signal, it will decompress it
and feed the LSP algorithm. Signal compression at the MC
involves the use of a transformation matrix � 2 RM⇥N .
Hence, if x is the original (uncompressed) encoded signal,
MC compress it using Eq. 4, obtaining y, the compressed
version of x.

At this point, we have to choose the appropriate mea-
surement matrix. Recent work has shown that when con-
sidering measurement matrices built using values selected
independently from certain distributions, exact signal recovery
can be achieved with high probability. One such choice is
the Gaussian distribution used in several works (e.g. [22]).
However, the generation of a Gaussian distribution may not be
easily achieved in practical implementations, such in this work.
The authors in [23] show that Toeplitz matrices with entries
drawn from the same distributions (e.g. Gaussian) are also
sufficient to recover a signal with high probability. A Toeplitz
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Figure 3: Malicious traffic analysis scheme

matrix has several attracting features [23]: (i) it requires the
generation of O(N) random variables, while independent and
identically distributed (i.i.d.) matrices require the generation of
O(MN) variables, (ii) multiplication with a Toeplitz matrix
can be performed using FFT and requires only O(Nlog2(N))

operations, compared to i.i.d. matrices that require O(MN)

operations, and (iii) i.i.d. matrices are not easily applicable in
certain scenarios (e.g., linear-time invariant systems).

After MC has compressed the encoded signal using the
Toeplitz matrix, it transmits it over the MCC using a suitable
protocol over UDP. Figure 3 shows the malicious traffic
analysis operations.

V. PERFORMANCE EVALUATION

In this section, we show the performance evaluation of the
malicious traffic analysis attacks in terms of power consump-
tion, and reconstruction error.

A. Reconstruction error and spectrum graph fidelity

As mentioned in the previous section, MC compresses the
signal prior to transmission to the MS. The compression
ratio used directly affects the power consumption and the
reconstruction error, defined as e = ||x�x̂||2

||x||2 , where x and x̂ are
the original and reconstructed signals, respectively. The higher
the compression ratio, the lower the power consumption, and
the higher the reconstruction error. In order to show the
effect of the compression ratio on the reconstruction error,
we vary the compression ratio from 5% to 75%, performing
CS compression at the MC, and decompression at the MS. We
execute simulations for a total of 3 hours in Cooja. Regarding
the CS parameters, we choose the Toeplitz as the measurement
matrix, FFT as the transformation matrix, and set N = 200

the maximum block size of the encoded signal when applying
CS. Figure 4 shows the cumulative density function (CDF)
of the reconstruction error for the various compression ratios.
Essentially, the reconstruction error depicts the fidelity of the
reconstructed signal.
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Depending on the application, the reconstruction error
shown in Figure 4 could be characterized as low, medium,
or high for the different compression ratios. In this work, we
are primarily interested to decompress the encoded signal, and
then use the LSP algorithm in order to find the highest peaks
in the frequency domain that signal the basic frequencies of
the periodic components in the captured wireless traffic.

Figure 5 shows the spectrum analysis using LSP for an
encoded signal that was transmitted from the MC without
using CS. The spectrum peaks at the frequencies 0.1 and 0.059
correspond to Flow-1 and Flow-2, respectively. The rest of
the peaks correspond to the harmonic frequencies of the flows
that can be eliminated by using the appropriate filtering. In
Figure 6, we show the traffic analysis revealed by the LSP
method when CS is used, and for the different compression
rations (that appear on the left side of each graph). For the
compression ratios of 5%, 25%, and 50%, the two spectrum
peaks clearly reveal the two periodic flows of the WSN. When
the compression gets higher (75%), the fidelity of the spectrum
graph lowers. This is because, as shown in Figure 4, the
reconstruction error significantly increases.

B. Power consumption

MC periodically encodes the captured timestamps and sends
the encoded signals to MS for traffic analysis. As already
mentioned in the literature, the power consumption related
to packet transmissions is the second highest after that due
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jointly with Compressed Sensing for different compression
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Figure 7: Power consumption of the Malicious Client for the
various compression ratios

to the listening operations. We apply CS for compressing the
packets MC sends to MS, and so we minimize the power that is
consumed for the transmission operations. For measuring the
power consumption of the MC, for the different compression
ratios applied during CS, we use powertrace [24], a built-in
power measurement module of Contiki. We simulated a 3-hour
run using the topology shown in Figure 1, recording the total
power consumption in MC. We repeat this procedure for 50
times, and plot MC’s power consumption in Figure 7, where
the error bars show the 95% confidence intervals. Observe that
as the compression ratio increases, MC’s power consumption
significantly decreases. This is because less packets are trans-
mitted into the network, hence less power is consumed.

VI. CONCLUSIONS

In this work, we presented an adversary model that per-
forms malicious traffic analysis in a WSN. It consists of two
distinct entities: a malicious client, and a malicious server.



The malicious client overhears the wireless channel, recording
the timestamps of the captured packets. The timestamps are
then encoded into signals that are compressed according to the
compressed sensing principles. The performance evaluation
shows that the power consumption significantly reduces as
the compression ratio increases. Furthermore, the fidelity of
the spectrum graph produced in the malicious server using
the LSP method is high, and it successfully reveals the
periodic components of the captured wireless traffic for high
compression ratios.
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Abstract—Wireless Sensor Networks (WSNs) have gained a lot of attention recently due to the potential they provide for developing
a plethora of cost-efficient applications. Although research on WSNs has been performed for more than a decade, only recently the
explosion of their potential applicability has been identified. However, due to the fact that the wireless spectrum becomes congested
in the unlicensed bands, there is a need for a next generation of WSNs, utilizing the advantages of Cognitive Radio (CR) technology
for identifying and accessing the free spectrum bands. Thus, the next generation of wireless sensor networks is the Cognitive Wireless
Sensor Networks (CWSNs). For the successful adoption of CWSNs, they have to be trustworthy and secure. Although the concept of
CWSNs is quite new, a lot of work in the area of security and privacy has been done until now, and this work attempts to present an
overview of the most important works for securing the CWSNs. Moreover, a discussion regarding open research issues is also given in
the end of this work.

F

1 INTRODUCTION

WSNs are daily gaining more ground into our lives with
applications ranging from construction monitoring and
intelligent transport, to smart home control and assisted
living. Through the novel communication standards of
the past decades such as Zigbee and IEEE 802.15.4, along
with the pervasiveness of IEEE 802.11, the development
of inter-operability and commercial solutions has been
enabled. Typically though, these solutions do suffer from
strict deployment design and poor scalability. At the
same time, the reliability of WSNs is a key topic for their
mass adoption for more critical, rather than luxury or
pilot applications, such as the smart metering [1].

Cognitive Radio (CR) features such as the opportunis-
tic spectrum (white space) usage, the introduction of sec-
ondary users in licensed bands, and the ability to learn
the environment through sensing, present themselves as
a mean to overcome spectrum shortage. Enabling such
CR characteristics over “traditional” WSNs allows them
to change their transmission parameters according to the
radio environment, and possibly enhance the reliability
of WSNs in areas densely populated by wireless de-
vices. These Cognitive Radio-imbued WSNs (CWSNs)
can have access to new spectrum bands with better
propagation characteristics. By adaptively changing sys-
tem parameters like the modulation schemes, transmit
power, carrier frequency, channel coding schemes, and
constellation size, a wider variety of data rates can be
achieved, especially when CWSNs operate on Software-
Defined Radios. This can improve device energy effi-
ciency, network lifetime, and communication reliability.

CR technology in CWSNs has largely improved net-
work performance. On the other hand, due to the cogni-
tive nature of these networks, new vulnerabilities have
appeared. Attacks targeting a CWSN can come from
internal or external network sources. Adversaries can
exploit vulnerabilities in different communication lay-
ers, many of which target the CR characteristics of the
CWSN. There are also special types of attacks that try to
infer sensitive information on the application and that
execute in the sensors themselves [2]. Our work here
aims to make a brief, yet succinct overview of possi-
ble attacks on CWSNs. We therefore begin providing
a background of WSNs and CWSNs in Sections 2 and
3, respectively. We then move to identify the common
features and attacks in both of these types of networks
in Section 4. In Section 5, we specify attacks applicable
only to CWSNs, and in Section 6 we detail security mech-
anisms for attack detection at different communication
layers. Our work concludes with a discussion of open
issues in Section 7.

2 OVERVIEW OF WIRELESS SENSOR NET-
WORKS

WSNs have become widely available from the early
2000’s, as sensing components and communication mod-
ules were already becoming cheap and small [3]. Mon-
itoring the environment with such low cost devices be-
came since then efficient, with a large volume of research
having been conducted in the last almost two decades
(one can trace the origins of WSNs in [4]). By now, WSN
solutions are deployed in large scales, in various places,
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and are being widely used in a variety of applications
ranging from military [5], to agricultural [6], and from
health care [7] to traffic management [8].

A WSN typically comprises a set of sensor nodes
equipped with limited, low-power/short-range commu-
nication capabilities. Each of these nodes is a com-
putational/communication platform which consists of
(at least) a sensing module, a transceiver, a processor
unit, and a power unit. The sensor node has typically
small physical dimensions and its components are in-
expensive. To make these sensor nodes more appealing,
communication is commonly based on the license-free
Industrial, Scientific and Medical (ISM) frequency band
[9], in order to further limit operational costs for the
overall WSN installation, and to enable direct use of off-
the-shelf communication solutions [10].

Depending on the application and deployment sce-
nario, WSNs may vary in the communication paradigm
they employ [11]. WSN applications set up to observe
and consequently report to a “fusion center” the oc-
currence of an event (such as a fire), do not need to
transmit continuously all measurements acquired by the
sensors [12]. On the other hand, in scenarios such as
pollution measurements [13] or seismic activity, the raw
data can well be meaningful in its entirety; in such a case,
the transmissions required would clearly be producing a
heavy communication load, thus efficient channel access
between the nodes as presented in [14] is required. These
two extremely different cases indicate a mapping to
the range of communication modes that may have to
be used to handle the WSN most limiting resources:
spectrum and energy (see [15], [16] and the references
therein). A very rudimentary method to address these is
WSN topological solutions which can be multi-hop [17],
hierarchical [18] or one-hop to infrastructure [19]. Each
one in the respective references given has a reasoning
to the underling spectrum management. Furthermore, in
each of these cases a key factor that affects the system
design is the power source and lifetime requirement of
the WSN [20]. The node power unit, mentioned earlier,
may be unlimited: for example in indoor scenarios where
the nodes can be directly plugged to the power grid.
In such cases, energy plays little to no role. On the
other hand, there can be extremely constrained scenarios
such as the Smartdust, where literally every mWatt has
to be accounted for, as the battery providing power
is constrained even by its physical size, let alone its
capacity. Energy harvesting [9] has recently been gather-
ing a significant attention as it can enable extension of
the node lifetime, leveraging the environment resources
(heat, motion, RF radiation, etc.).

3 ENHANCING WIRELESS SENSOR NETWORKS
WITH CR TECHNOLOGY

While the WSN solutions were progressing well into
the late 2000’s, the dramatically rising demand for wire-

less connectivity brought the spectrum utilization into
the spotlight. Cognitive radio [21] and opportunistic
communications, especially under the paradigms of op-
portunistic access or delay tolerant networking, came
naturally into the frame of WSNs [22], [23]. Research has
thus began into considering CR aspects for WSNs [24],
[25].

Opportunistic access is based on sending the transmis-
sions over the “most suitable” spectrum band under a
set of predefined application-driven requirements. With
delay tolerance, a temporal aspect comes also into play:
nodes can withhold data and transmit them at the “best”
possible moment, subject to the application delay con-
straints. To enable these features, an additional amount
of dedicated spectrum sensing is required by the nodes,
and in some cases local coordination schemes are used
in order to cooperatively infer about the radio spectrum
usage at a specific area [26], [27]. This flexibility is further
employed to adjust transmission parameters (modula-
tion and coding schemes, and transmission power) to
reduce overall power consumption. Existing schemes
developed to obtain spectrum awareness for cognitive
radios in some cases consider the power consumption
problem [28], [29], a clearly critical issue for CWSN.
Reduced power consumption considered in CWSNs not
only can extend the lifetime of sensor nodes, but can also
limit the overall spectrum inefficiencies of the network,
allowing for a substantial increase in spectrum utiliza-
tion [30], [31].

4 FEATURES AND COMMON ATTACKS IN
WSNS AND CWSNS

4.1 Common features of WSNs and CWSNs

WSNs and CWSNs are two types of sensor networks that
have a number of common characteristics. They consist
of miniature devices, called as motes or sensors that are
severe resource constrained devices in terms of memory,
processing, and energy [32], [33]. They usually do not
perform any computation on the data they collect; they
just forward this information to much more powerful
devices (called as sinks) for further processing.

The communication medium used for both WSNs and
CWSNs has a broadcast nature and the used spectrum
is split into several channels, depending on the protocol
used. For example, there are up to 16 available channels
for the IEEE 802.15.4 in the 2.4 GHz frequency band.

In both types of networks, the communication proto-
cols used have a number of inefficiencies and vulnera-
bilities that allow potential attackers to launch a variety
of destructive attacks against these networks. The result
of these attacks has catastrophic consequences including
network performance deterioration, information theft,
lifetime minimization, battery depletion, etc.

A multi-hop type of communication is often used in
both types of networks (e.g. [34]) when data from a large



3

and/or harsh area have to be sensed. Information flows
from a sensor to a sink through multiple intermediate
sensors that route packets according to an appropri-
ate routing algorithm (e.g. RPL [35]). In a number of
contributions, the network is split into several clusters
and decisions are taken by the cluster heads in order
to minimize sensors communication overhead and save
energy, prolonging network’s lifetime.

In both types of networks, network topology is highly
dynamic and unpredictable without any central man-
agement. This is the case when sensors are deployed in
harsh and volatile environments (e.g. [36], [37]). In such
cases, adversaries can more easily attack and compro-
mise the WSN.

4.2 Common attacks against WSNs and CWSNs

The above common characteristics of WSNs and CWSNs
make them vulnerable to a number of security threats.
A diverse range of vulnerabilities are exploited by ad-
versaries who can have several incentives, e.g. network
disruption, information theft, etc. In general, there are
two types of attackers [38]: (i) external attackers that are
not authorized participants of the sensor network, and
(ii) internal attackers that have compromised a legitimate
sensor, and use it to launch attacks in the network.
Furthermore, attackers can be classified into passive and
active. Passive attackers monitor network traffic without
interfering with it. Their aim is to eavesdrop on the
exchanged information and to acquire private data, or
to infer about information-sensitive applications that
execute in the sensors (e.g. [2]). Active attackers disrupt
network operation by launching several types of attacks
that cause DoS (Denial-of-Service) in the WSN.

A severe DoS attack is jamming at the physical layer
of the network. An adversary by creating interference,
mainly through energy emission in the neighboring
channels of the channel used by the sensor network
([39]), substantially increases the noise such that poten-
tial receivers become completely unavailable to receive
and decode any information. This results to packet loss
and further retransmissions by the senders that poten-
tially lead to energy waste in the sensor network.

Jamming attacks can also be launched at the link layer.
Here, an attacker can violate several characteristics of
the communication protocol and cause packet collisions,
exhausting sensors’ resources. The authors in [40] show
how a single adversary can cause severe performance
degradation by violating several rules of the link layer
protocol (back-off mechanism). Another popular attack
is the Sybil attack where an adversary maliciously uses
the identities of a number of sensors. This is achieved
either by learning other sensor’s identities or by fabri-
cating new ones [41]. Furthermore, other types of attacks
such as MAC spoofing ([42]) and ACK attacks ([43]) can
cause confusion and packet loss in the network.

A major challenge in a WSN is maximizing its network

lifetime by choosing the appropriate mode of commu-
nication. Single-hop communication, where the sensors
communicate directly to a sink, is the flavour mode
when the number of the sensors and the communica-
tion radius are small [44]. On the other hand, when
the number of sensors is large (a typical case when
a large area has to be covered by sensors) multi-hop
communication is the most appropriate mode that saves
sensors’ energy, prolonging network’s lifetime. In the
multi-hop scenario, sensors have a dual role; they sense
the environment and they also route the packets of
their neighbors towards the sink (and vice-versa). Packet
forwarding and optimal path selection is performed by
following an appropriate routing protocol. Adversaries
can exploit several vulnerabilities and launch attacks
against multi-hop sensor networks. Various attacks have
been reported in the literature:

• Selective forwarding attack, where attackers drop
the packets they have to route, randomly or se-
lectively based on some rules (e.g. packets that
originate from a specific sensor).

• Sinkhole attack, where an attacker by broadcasting
fake information make the legitimates nodes believe
that the attacker is attractive according to the rout-
ing protocol. If this attack is successful, neighboring
sensors will forward their packets to the attacker
that is then free to alter or steal information or drop
the packets.

• Wormhole attack. This attack is performed by a
number of colluding adversaries that forward pack-
ets between them through a direct long-distance and
low-latency communication link (wormhole link).
With this attack, legitimates sensors at a specific area
of the network believe that they are close neighbors
with sensors of another area that is however far
away. This illusion creates confusion and affects
routing within the network.

Except the above attacks that exploit several vulnera-
bilities in different layers of the communication stack,
there is a special type of attack that aims to infer
about information-sensitive application that execute in
the sensors. Suppose that there is an on-body sensor
network (e.g. [45]) consisting of a number of sensors
that record high-sensitivity data such as the heart rate,
oxygen saturation, etc. Usually these applications trans-
mit the sensed data to a sink in a periodic fashion [46].
Recent works ([2], [46]) have shown that adversaries can
infer about these applications by passively monitoring
the network traffic and detecting its periodic components
that can finally reveal the potential medical applica-
tions. This becomes feasible using the appropriate signal
processing techniques (e.g. Lomb-Scargle periodogram)
that discover traffic’s periodic components even if it is
encrypted.
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5 SPECIFIC ATTACKS AGAINST CWSNS

As described in the previous section, WSNs and CWSNs
have a number of common features and hence some
common vulnerabilities that can be exploited by poten-
tial adversaries. Nevertheless, CWSNs have two unique
characteristics (that WSNs do not have) due to their
cognitive nature [47]:

• Cognitive capability which allows sensors to sense
the environment for white spaces. Then, through
a spectrum management process they decide upon
which band to use for transmission, and how to es-
timate the related to transmission physical layer pa-
rameters (frequency, modulation type, power, etc.).
The cognitive cycle consists of several mechanisms:
(i) radio environment, (ii) spectrum sensing, (iii)
spectrum analysis, and (iv) spectrum decision.

• Reconfigurability that allows sensors to change on-
the-fly their physical layer parameters and adapt
to their environment. As sensors in CWSNs oppor-
tunistically use the fallow bands, they have to be
flexible and vacate a band if a primary transmission
is detected.

These unique characteristics make CWSNs vulnerable
to a number of novel attacks. One of the most destruc-
tive attacks is called as primary user emulation attack
(PUEA). In this attack, an adversary mimics a primary
user (PU) by transmitting fake incumbent signals [48].
Legitimate sensors will immediately evacuate the spe-
cific (under attack) frequency band, seeking for an alter-
native band to operate. Adversaries launching this attack
can be of two types: (i) greedy sensors that emit the fake
incumbent signals in order to make legitimate sensors
evacuate the band in order to acquire its exclusive use,
and (ii) malicious sensors that aim to cause a DoS attack
making sensors hop from band to band. Regardless the
type of the adversary, the PUEA attack can cause severe
network disruption and a huge energy waste to the
legitimate sensors. Fig. 1 [47] shows that the PUEA attack
affects all parts of the cognitive cycle.

As mentioned before, spectrum sensing is a funda-
mental operation, and is one of the most challenging
issues of the cognitive cycle. Spectrum sensing is the
task of obtaining awareness about the spectrum usage
and the possible presence of primary users [49]. During
this operation, there is always the risk for the cogni-
tive sensors not to correctly decode and hence detect
the primary signals because of the shadow fading and
hidden node effects. If this happens, harmful interference
will be created to the primary transmitters. Collaborative
spectrum sensing has been proposed as a solution to
this problem [50]. In collaborative spectrum sensing,
all sensors perform spectrum sensing and report their
findings to a fusion centre (FC). The FC after performing
a spectrum analysis procedure based on the sensors’
reporting, decides if a spectrum hand-off has to be
performed, and at which frequency band. In a CWSN,
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Fig. 1: The cognitive cycle [47]

the sink or the cluster heads (if the sensor network uses
clusters) can have the role of the FC. However, if the
network is not partitioned into clusters, or the sink is far
away from the majority of the sensors, this centralized
scheme is not feasible. In such cases, distributed sensing
can take place, where each sensor based on its own
spectrum observation and the observations shared by
its neighboring sensors, makes its own spectrum deci-
sions [51].

Adversaries can exploit the above mechanisms and
affect FC’s decision (or their neighbors’ decision in dis-
tributed sensing) by sending false observations regard-
ing spectrum usage. This attack is called as spectrum
sensing data falsification attack (SSDF). SSDF attackers
can report that a specific band is vacant when it is not,
or that is occupied by primary signals when it is not. In
the first case, harmful interference to the primary users
will be created, while in the latter, legitimate sensors
will keep performing costly (in terms of energy) spec-
trum hand-offs. Attackers can have different motives:
(i) they can be greedy users that continuously report
that a specific band is occupied in order to acquire its
exclusive use, and (ii) they can be malicious nodes that
by sending false observations, aim to create interference
to primary transmitters or create a DoS attack to the
network due to the continuous spectrum hand-off of
the legitimate sensors. SSDF attacks can also be initiated
by unintentionally misbehaving sensors that report false
observations because some parts of their software or
hardware components are malfunctioning. This type of
attack can substantially degrade network’s performance
as the authors in [52] show. Regarding the cognitive
cycle, the SSDF attack affects the spectrum analysis, and
spectrum decision operations (Fig. 1).
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6 SECURITY, PRIVACY AND RELIABILITY
MECHANISMS FOR CWSNS

6.1 Security

Securing a WSN is of paramount importance, and for
this reason a large number of contributions exist in the
literature for the detection and mitigation of attacks
against this type of networks. Depending on the attack
type, different strategies and algorithms are followed.

6.1.1 Physical layer attack detection

As mentioned in Section 4.2, jamming at the physi-
cal layer can cause disruptive DoS attacks in a WSN.
The detection techniques try to (almost) instantly detect
that a jamming attack is taking place by considering
various metrics. The authors in [53] use the signal-to-
interference-plus-noise ratio (SINR) as the metric that
can signal the jamming attack. The recorded SINR values
are fed to a cumulative-sum algorithm that is able to
detect abrupt changes that are caused by the attacker’s
presence. The performance of this anomaly-based detec-
tion algorithm is augmented if several monitors are used
in a collaborative intrusion detection scheme. In [54],
the definition of several types of attackers is given, and
jamming detection is performed by using multiple if-else
statements considering as metrics the packet delivery ratio,
the bad packet ratio, and the energy consumption amount.
In [55], a distributed anomaly detection algorithm is
presented based on simple thresholds, and a method
for combining measurements using the Pearsons product
moment correlation coefficient. RF jamming attacks is
the focus of [56] where the proposed algorithm applies
high order crossings, a spectral dissemination technique
that distinguishes normal scenarios from two types of
defined attackers. The detection algorithm is based on
thresholds considering the signal strength and location
information. The authors in [57] propose DEEJAM, a
defensive mechanism that uses an IEEE 802.15.4-based
hardware. Here, the proposed algorithm hides messages
from a jammer, evades its search, and reduces the impact
of the corrupted messages.

6.1.2 Link layer attack detection

Contributions that study the detection of attacks at the
link layer include [40]. Here, an anomaly-based algo-
rithm is presented considering the ratio of the cor-
rupted packets over the correctly decoded packets as
the metric that reveals jamming when the attacker’s
energy is emitted on the same channel. In [58], the
authors explore energy-efficient attacks targeting three
WSN protocols: (i) S-MAC, (ii) B-MAC, and (iii) L-MAC.
As a countermeasure they suggest the use of shorter
data packets for the L-MAC, and high duty cycle for
the S-MAC. Link layer misbehaviour in [59] is detected
by applying a non-parametric cumulative-sum algorithm
considering the expected back-off value of the honest

participants. MAC address spoofing detection in WSN
is studied in [60]. In that work, an approach based on
Gaussian mixture models that considers RSS (Received-
Signal-Strength) profiles is used to detect if a MAC
address is spoofed. RSS is a metric that is hard to forge
arbitrarily, and it highly depends on the transmitter’s
location. The authors in [42] propose an algorithm that
leverages the sequence number field carried by the data
packets. This algorithm records the sequence number of
each received frame and that of the last frame coming
from the same source node. When the gap between the
current sequence number and the last recorded one is
between a specific range, is considered as abnormal. For
each abnormal frame, a verification process follows to
declare the specific frame as normal or spoofed.

Regarding the Sybil attack detection, the algorithm
in [61] uses the ratios of the RSSI (received-signal-
strength-indicator) recorded in a number of sensor mon-
itors when a packet is transmitted within their com-
munication range. If these ratios are very close to the
ratios computed when a packet with a different identity
is used, the corresponding transmitter is flagged as a
Sybil attacker. In [62], the detection algorithm exploits
the characteristic that every Sybil (forged) sensor has the
same set of neighbors as they are created by the same
adversary. It detects the Sybil attack by comparing the in-
formation collected from neighboring sensors (contained
in small messages). In [63], Sybil attacks are detected
by exploiting the spatial variability of radio channels in
environments with rich scattering. An enhanced physical
layer authentication scheme is used for both wideband
and narrowband wireless systems.

6.1.3 Network layer attack detection

As described in Section 4.2, a wide number of vulner-
abilities of the routing protocols can be exploited in
sensor networks. Different countermeasures have been
proposed for the detection of these attacks. In [64], a
lightweight scheme uses a multi-hop acknowledgment
technique to launch alarms when responses from inter-
mediate sensors are missing. Each time a sensor receives
a data packet, it sends an ACK to the sensor that handled
the packet in the previous hop. If a sensor receives less
than a number of ACK packets within a specified time, it
suspects that the previous report it forwarded, has been
dropped by a malicious sensor. If this is the case, it sends
an alarm packet to the sink, reporting its next-hop sensor
as a potential malicious sensor. The sink after it receives
all alarm packets it infers about the malicious sensors.
The authors in [65] propose a centralized scheme with
the use of support vector machines (SVMs). A 2D SVM
is initially trained when no attacker is present, using the
hop count and the measured bandwidth at the sink as
features. At run time, the detection algorithm based on
the SVM executes at the sink. A different approach is
followed in [66] where each sensor observes the behavior
of its neighbors recording the number of packets they
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forward, along with the source address of the originating
sensor. Based on these observations, it updates a trust
metric for each of its neighbors that reveals the potential
attackers. After a sensor has been labelled as an attacker,
the routing tables are modified in order to isolate that
sensor from the network.

For the detection of the sinkhole attacks, a distributed
detection scheme is presented in [67]. Every sensor Si is
set in promiscuous mode and records the route update
packets transmitted by its neighbors. Furthermore, two
rules have been defined that if violated, an alert message
is broadcasted: (i) if sender’s ID matches Si’s ID, and
(ii) if sender’s ID does not belong to the known IDs
of Si’s neighbors. This detection scheme also employs
a collaborative detection algorithm that reveals the po-
tential attacker based on an intersection computation of
the information carried by the alert messages. Ngai et
al. [68] propose a detection algorithm that consists of two
steps: (i) it locates a list of suspected sensors by checking
data consistency based on the information sensors report
to the sink, and (ii) it labels a sensor as an attacker
by analyzing the network flow information (represented
by directed edges between communicating sensors). The
authors in [69] show that shortest-path routing protocols
select a series of paths whose length exhibits a log-
normal distribution. Based on this observation, they
propose an anomaly detection algorithm by deriving
tolerance limits from the log-normal distribution of path
lengths when no attacker is present.

Regarding the wormhole detection, the scheme pro-
posed in [70] considers the round-trip-time (RTT) be-
tween an originating sensor and its destination. RTT
depends on how far the intermediate sensors are located.
If a wormhole attack is in progress, RTT can significantly
increase, as packets are replicated in a different part of
the network from colluding attackers. In [71], a local-
ized scheme based on connectivity graphs is proposed.
It seeks for forbidden substructures in the connectivity
graphs that should not be present under normal cir-
cumstances. The authors in [72] propose a distributed
detection algorithm that detect wormhole attacks based
on the distortions these attacks create in the network.
This scheme uses a hop counting technique as a probe
procedure, reconstructing local maps for each sensor,
and then a diameter-feature that depends on the number
of neighboring nodes, for anomaly detection.

6.1.4 Detection of attacks that exploit vulnerabilities of

the cognitive nature of CWSNs

A possible framework for securing CR networks has
been proposed in [73] and can easily be extended to
secure CWSNs. This framework attempts to identify the
mechanisms that can mitigate the specific attacks on
Cognitive Radio networks. As discussed in Section 5,
there are two major types of attacks that can be launched
against CWSNs: (i) PUEAs, and (ii) SSDF attacks. Re-
garding the detection of the PUEAs, there is a large num-

ber of significant contributions that split into two main
categories: (i) location-based, and (ii) non-location based.
Location-based contributions assume that the locations
of the primary transmitters are known a priori.

The work in [48] considers both the location infor-
mation of the primary transmitter along with the RSS
values collected by a separate sensor network each time
an primary transmission is taking place. Based on the
RSS measurements the location of the transmitter is
estimated, and if it is different than the (already) known
location of the legitimate primary transmitter, an alarm
is triggered. Jin et al. [74] developed an algorithm that
considers the received power measured at the radio
interfaces of the secondary users (SUs) in a specific
band. Then, by using Fenton’s approximation and Wald’
sequential probability radio test, they decide on the
corresponding hypothesis about the presence or not of
a PUEA attacker. The received power is also considered
in [75] where the authors propose a variance method to
detect the attack. This scheme first estimates the variance
of the received power from the primary transmitter, and
then it determines whether a received signal is from the
primary transmitter or from an attacker.

In non-location based algorithms like in [76], the lo-
cations of the primary transmitters is not required to
be known. The authors state that the channel impulse
response can reveal if a primary transmitter has moved
to a different location. Their approach uses a helper node
(HN) that is located very close to a primary transmitter
in a fixed location. This node is used as a bridge between
the SUs and the primary transmitter by allowing SUs
to verify cryptographic signatures by HN’s signals, and
then obtain HN’s link signals in order to verify primary
transmitter’s signals. The authors show that by using
the first and second multi-path components measured
at HN, they can verify if the transmitted signal be-
longs to the legitimate primary user or it is fake. The
scheme presented in [77] uses a public key cryptography
mechanism where a primary transmitter integrates its
transmitted data with cryptographic signatures. Each
SU that detects a primary signal attempts to verify its
integrated signatures. If verification fails, the signal is
characterized as fake.

Regarding the SSDF attack detection, in [52] a central-
ized algorithm calculates the trust values of SUs based
on their past record. Additionally, consistency checks
are performed because the trust values can become
unstable if an attacker is present or there is not enough
information. If the consistency value and the trust value
of an SU drops below a specific threshold, the specific
SU is characterized as an attacker. Rawat et al. [78]
propose a centralized scheme that computes a reputation
metric for each SU based on SU’s past observation,
and the decision is made by the FC during that round
of observations. If there is a decision mismatch, SU’s
reputation metric is increased by one, and if it becomes
larger than a predefined threshold, SU is labelled as
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an attacker. Reputation metrics are also used by other
similar contributions like in [79], [80].

6.2 Privacy

Although security attacks in WSNs have been very
extensively researched until now, “privacy” attacks are
a not so common research topic. Most works until now
have focused mainly on protecting the location privacy
of the sensor nodes, while others focus on protecting
the data traffic that are transmitted by the nodes. How-
ever, when sensors are enhanced with CR technology,
the traditional WSN privacy attacks still exist, with the
addition of other attacks for eavesdropping the sensing
data (in collaborative spectrum sensing) and the context
of the exchanged sensor data, for impersonating the PU
and against the anonymity of a sensor node. In this
section the common attacks against privacy on CWSN
are described, together with the existing mechanisms for
mitigating these attacks.

6.2.1 CR Location privacy

Location privacy is a major research topic in cognitive
WSNs due to the fact that the spectrum opportunities
(namely the unoccupied spectrum frequencies or the
white spaces) are heavily depending on the location
of both the sensor nodes and the PUs. The received
PU signal at the sensor nodes is highly related to the
distance between the sensor nodes, and a malicious user
can identify the sensor node location using geo-location
mechanisms. Furthermore, in participatory sensing [81]
the data from the sensor nodes are usually tagged with
location and the time.

According to [82], the respective location privacy at-
tacks can be either external (combined with eavesdrop-
ping) or internal. An external attacker can intercept the
spectrum sensing reports that are exchanged throughout
the CWSN by eavesdropping the communication of the
sensor nodes either with each other, or with the FC (in
case of a centralized spectrum sensing system). That way,
the attacker is able to know the received PU signals of
all sensor nodes and by correlating the data with its own
sensing reports, he is able to identify the location of the
sensor nodes. An internal attacker can be either another
node participating in the collaborative sensing or the
fusion center (or an attacker impersonating the fusion
center). That way the attacker seems to be a legitimate
node that receives the sensing reports from all other
nodes, and can easily compromise their location by cor-
relating the data with his physical location. An internal
attacker can also exploit the results of the aggregated
sensing reports that are being transmitted by the FC.
That way, comparing the reports before and after the
inclusion of a new node in the network, it is easy to
identify its location.

6.2.1.1 Mitigation

For preserving the privacy of cognitive sensor nodes,
in [82] a combination of techniques for cryptography
and sensing data randomization has been proposed. The
first technique uses the concept of secrets [83] and each
sensor encrypts its sensing data in such a way that the
FC should get all reports in order to be able to decrypt
the aggregated sensing report. That way, a malicious
user cannot decrypt the reports of a specific user by
intercepting either its reports or even the encrypted
reports from all sensors, hence sensors’ locations cannot
be estimated.

Another proposal ([82]) for protecting the location of
cognitive sensors includes the transmission of dummy
sensing reports from one of the legitimate nodes or the
fusion center when a new node is joining or leaving
the network. Although this can degrade the performance
of collaborative sensing, an appropriate selection of the
dummy report and its weight on the overall sensing ag-
gregation can have a minimal impact, without affecting
significantly the sensing result.

Proposals for ensuring location privacy in partici-
patory sensing include the anonymization of sensing
reports using the principle of k-anonymity [84], [85], [86],
[87], which assumes that at least k users are located at
the same area, and thus they tag their sensing reports
with an area “ID”, and not with their actual location
information. That way, if an attacker eavesdrops the
reports of the sensor nodes, only an abstract view of
the general area of the users could be extracted and not
an actual location. However, the performance of such
a sensing system is heavily depending on the size of
the area, because a small area can result to an optimum
sensing result but can also give enough information to
the attacker to identify the location of the sensor nodes.
On the other hand, a large area may preserve the nodes’
location information, but can degrade significantly the
performance of the participatory sensing system.

6.2.2 Sensed data privacy

Like traditional WSNs, CWSNs are deployed for getting
automated measurements and transmitting them to an
application server for processing. This information may
be sensitive in some applications and must be protected
from unauthorized access and use. For example, hi-
jacking the information sent by sensors measuring the
energy consumption of devices in a household, may re-
veal the presence/absence of the habitants, which could
be utilized by burglars. Respective attacks against the
sensor data include eavesdropping, impersonation, and
traffic analysis [88].

Eavesdropping (or passive monitoring) is a very com-
mon attack on WSNs, under which an attacker is lis-
tening the communication channel of the sensor nodes
and intercepts their data. In this attack, the malicious
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node is hidden from the sensor nodes because it does
not communicate directly with them. Under the imper-
sonation attack, the malicious node impersonates either
a legitimate node or the FC, and gets the data directly
from the legitimate sensor nodes. This attack can be the
first point to launch other attacks changing the data and
transmitting false data to the other nodes. The traffic
analysis is used by attackers to extract the context of
data that are transferred by the sensors, and is achieved
by analysing the traffic patterns from eavesdropping
the wireless links. Using the traffic analysis attack, a
malicious node can also identify some nodes that have
a special role in the CWSN (i.e. who has the role of the
FC).

6.2.2.1 Mitigation

Targeting to avoid the disclosure of the sensed data
to unauthorized recipients, several proposals have been
made in the literature, which mainly focus on anonymity
schemes or on information flooding. Using anonymiza-
tion, the data sent by a legitimate node do not contain
personal information that can be used to track back the
measurements to the originating sensor node [89]. In
[90], a framework for context-aware privacy of sensor
data is proposed, which includes a two step process
of (i) identifying which data will be shared, and (ii)
obfuscating the data before transmitting them. Although
most previous anonymization proposals were focused on
protecting sensor location information [82], [91], they can
be relatively easily adapted to the sensed data that the
nodes are transmitting. Information flooding is another
technique that can be used to protect the data privacy
in CWSNs, as proposed in [92], which discusses that
probabilistic flooding can give good protection to the
node information while being energy efficient.

7 CONCLUSION

WSNs and CWSNs are two similar sensor network types
with quite a few common features. Recently there has
been an explosion of Smart City applications for provid-
ing advanced ICT-based services to citizens with the use
of enhanced WSN networks. For the realization of such
applications a plethora of sensing and actuating devices
are usually installed either in a city area or within
buildings. In this context, the WSNs will be playing a
significant role in the everyday life of people, and thus
their security is of great importance. This explosion in
the number of wireless sensing and actuating devices
in city areas together with the continuous installation
of many (public and private) wireless access networks
in these areas, have resulted in congestion in the un-
licensed spectrum bands (ISM bands around 2.4 GHz)
that are used for both WSNs and WiFi. For mitigating
the congestion effects on the WSN networks, there are
proposals to equip the latter with CR technology forming

the CWSNs, which on the one hand solves several issues
of traditional WSNs security-wise, but introduces new
security threats.

Securing WSNs and CWSNs is of key importance,
and a large pool of contributions from the literature
for the detection and mitigation of attacks against these
networks has been presented in this paper. Furthermore,
an overview of the most common attacks against CWSN
is presented in Table 1. Depending on the attack type,
different strategies and algorithms are followed. Exploit-
ing the CR features of CWSN enables two major classes
of attacks that can be launched against them: (i) PUEAs,
and (ii) SSDF attacks. Regarding the detection of the
PUEAs a significant number of contributions exist which
can be broken into two categories: (i) location-based, and
(ii) non-location based. For the former the key challenge
is the detection of the attacker’s location, an issue that is
open in many other problems of wireless networking.
The SSDF attack detection in the literature presented
here is primarily based on the notions of reputation
and trust, given the collaborative nature of the proposed
solutions. Regarding privacy, the most common attacks
are those against identifying the location of the cognitive
sensors node, and those against intercepting the sensing
data.

Although much research has been done in the lit-
erature regarding the security of the CWSNs, there
are still several challenges and open research issues
remaining. One of the most important challenges is
related to introducing trust within the CWSN archi-
tecture. Although several attempts for mitigating SSDF
attacks are introducing reputation mechanisms for the
cognitive nodes, these can be considered as an “add-
on” feature, while a trust framework embedded within
the cognitive nodes that not only addresses the SSDF
attacks, but ensures the complete trustworthy operation
(starting from the sensed data and going all the way up
to ensuring the trustworthiness of the applications that
run on the nodes) of the cognitive nodes. Another open
challenge is related to designing lightweight crypto-
graphic algorithms that could run on the very resource-
limited cognitive sensor nodes, focusing on private-
key cryptography, efficient key distribution schemes for
symmetric key cryptography, and efficient key manage-
ment protocols for public key cryptography. Regarding
routing, in CWSNs there is a need for further research on
secure routing schemes taking into account the spectrum
assigned to each one of the intermediate nodes, as well
as the mobility of the nodes, and the potential scalability
and efficiency issues. Moreover, in data aggregation
mechanisms there is a need for further research on
enhancing the data aggregation and securing it against
malicious cognitive users, introducing trust and security
metrics. Other open research issues regarding security
in CWSNs that need to be addressed in future research
include the use of geo-location information for improv-
ing security i.e. in PUEA attacks, the investigation of
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TABLE 1: Attacks against CWSNs.

Type of attack OSI Layer Characteristic
Common
with
WSN

Jamming Physical layer DoS attack creating interference, increasing packet loss
and collisions Yes

Back-off attack Link Layer an attacker causes severe performance degradation by
minimizing the CWmin and thus his back-off period Yes

Sybil attack Cross layer stealing sensors identities, i.e. MAC address, IP address,
etc. Yes

MAC spoofing Link layer alternating a MAC address on a network interface can
help an unauthorized intruder enter a secure network Yes

Selective
forwarding
attack

Network layer attackers drop packets they have to route Yes

Sinkhole attack Network layer
attacker broadcasts false routing related information so
that neighbouring nodes send them their packets and
steals information or drops them

Yes

Wormhole
attack Network layer

adversaries exchange packets through a long-distance
and low-latency links affecting routing making legit-
imate sensors believe that they are neighbours with
sensors of another area

Yes

PUEA Physical layer
adversaries mimic PU so that hey exploit unused fre-
quencies that the other nodes assume as occupied by the
PU.

No

SSDF attack Physical layer attackers provide false information regarding spectrum
occupancy No

Location
privacy attacks Physical layer attackers intercept signals and sensing reports so that

with data correlation they can identify the sensor location No

Sensed data
privacy attacks

Physical/link
layer

attackers eavesdrop the channel and analyse the traffic
to intercept the sensed data that are transmitted by the
sensors

Yes

intelligent physical layer security mechanisms that ex-
ploit CR characteristics, the development of distributed
mechanisms against SSDF attacks and the design of ef-
ficient cooperative mechanisms against malicious nodes
and intruders.
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